Skip to main content
Log in

Nanoparticles of antimony sulfide by pulsed laser ablation in liquid media

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In the present article, antimony sulfide nanoparticles have been synthesized by pulsed laser ablation of an antimony sulfide pellet in distilled water and isopropyl alcohol. The target was irradiated by 1064 and 532 nm from a pulsed Nd:YAG laser operated at 10 Hz and pulse width of 10 ns at room temperature. Analysis of the morphology, crystalline phase and elemental composition were done using transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDX), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The optical band gap energies of these colloidal nanoparticles were evaluated from UV–Visible absorption spectra. It was observed that the morphology, size, and optical properties of the antimony sulfide nanoparticles depend on the wavelength of the laser and the liquid media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zhang JH, Chen Z, Wang ZL, Ming NB (2003) J Mater Res 18(08):1804. doi:10.1557/JMR.2003.0250

    Article  CAS  Google Scholar 

  2. Sheikhiabadi PG, Salavati-Niasari M, Davar F (2012) Mater Lett 71(0):168. doi:10.1016/j.matlet.2011.12.038

    Article  CAS  Google Scholar 

  3. Alemi A, Joo SW, Hanifehpour Y, Khandar A, Morsali A, Min B-K (2011) J Nanomater 2011:1. doi:10.1155/2011/186528

    Google Scholar 

  4. Castro JR, Molloy KC, Liu Y, Lai CS, Dong Z, White TJ, Tiekink ERT (2008) J Mater Chem 18(44):5399

    Article  CAS  Google Scholar 

  5. Lou W, Chen M, Wang X, Liu W (2007) Chem Mater 19(4):872. doi:10.1021/cm062549o

    Article  CAS  Google Scholar 

  6. Hu H, Mo M, Yang B, Zhang X, Li Q, Yu W, Qian Y (2003) J Crystal Growth 258(1–2):106. doi:10.1016/S0022-0248(03)01494-5

    Article  CAS  Google Scholar 

  7. Chen X, Zhang X, Shi C, Li X, Qian Y (2005) Solid State Commun 134(9):613. doi:10.1016/j.ssc.2005.03.004

    Article  CAS  Google Scholar 

  8. Mo M, Zhu Z, Yang X, Liu X, Zhang S, Gao J, Qian Y-T (2003) J Crystal Growth 256(3–4):377. doi:10.1016/S0022-0248(03)01355-1

    Article  CAS  Google Scholar 

  9. Li C, Yang X, Liu Y, Zhao Z, Qian Y (2003) J Crystal Growth 255(3–4):342. doi:10.1016/S0022-0248(03)01266-1

    Article  CAS  Google Scholar 

  10. Han Q, Chen L, Zhu W, Wang M, Wang X, Yang X, Lu L (2009) Mater Lett 63(12):1030. doi:10.1016/j.matlet.2009.01.078

    Article  CAS  Google Scholar 

  11. Amendola V, Meneghetti M (2009) Phys Chem Chem Phys 11(20):3805

    Article  CAS  Google Scholar 

  12. Yang L, May PW, Yin L, Brown R, Scott TB (2006) Chem Mater 18(21):5058. doi:10.1021/cm061485e

    Article  CAS  Google Scholar 

  13. Zeng H, Du X-W, Singh SC, Kulinich SA, Yang S, He J, Cai W (2012) Adv Funct Mater 22(7):1333. doi:10.1002/adfm.201102295

    Article  Google Scholar 

  14. Singh SC, Zeng H (2012) Sci Adv Mater 4(3–4):368. doi:10.1166/sam.2012.1294

    Article  CAS  Google Scholar 

  15. Compagnini G, Scalisi AA, Puglisi O (2003) J Appl Phys 94(12):7874

    Article  CAS  Google Scholar 

  16. Compagnini G, Scalisi AA, Puglisi O (2002) Phys Chem Chem Phys 4(12):2787

    Article  CAS  Google Scholar 

  17. Compagnini G, Messina E, Puglisi O, Nicolosi V (2007) Appl Surf Sci 254(4):1007. doi:10.1016/j.apsusc.2007.07.177

    Article  CAS  Google Scholar 

  18. Compagnini G, Messina E, Puglisi O, Cataliotti RS, Nicolosi V (2008) Chem Phys Lett 457(4–6):386. doi:10.1016/j.cplett.2008.04.051

    Article  CAS  Google Scholar 

  19. Amendola V, Polizzi S, Meneghetti M (2007) Langmuir 23(12):6766. doi:10.1021/la0637061

    Article  CAS  Google Scholar 

  20. Amendola V, Meneghetti M (2007) J Mater Chem 17(44):4705

    Article  CAS  Google Scholar 

  21. Amendola V, Polizzi S, Meneghetti M (2006) J Phys Chem B 110(14):7232. doi:10.1021/jp0605092

    Article  CAS  Google Scholar 

  22. Amendola V, Rizzi GA, Polizzi S, Meneghetti M (2005) J Phys Chem B 109(49):23125. doi:10.1021/jp055783v

    Article  CAS  Google Scholar 

  23. Mafuné F, J-y K, Takeda Y, Kondow T, Sawabe H (2000) J Phys Chem B 104(39):9111. doi:10.1021/jp001336y

    Article  Google Scholar 

  24. Mafuné F, Kondow T (2004) Chem Phys Lett 383(3–4):343. doi:10.1016/j.cplett.2003.10.149

    Article  Google Scholar 

  25. Mafuné F (2004) Chem Phys Lett 397(1–3):133. doi:10.1016/j.cplett.2004.08.108

    Article  Google Scholar 

  26. Mafuné F, J-y K, Takeda Y, Kondow T (2003) J Am Chem Soc 125(7):1686. doi:10.1021/ja021250d

    Article  Google Scholar 

  27. Lalayan AA (2005) Appl Surf Sci 248(1–4):209. doi:10.1016/j.apsusc.2005.03.004

    Article  CAS  Google Scholar 

  28. Salminen T, Dahl J, Tuominen M, Laukkanen P, Arola E, Niemi T (2012) Opt Mater Express 2(6):799

    Article  CAS  Google Scholar 

  29. Singh MK, Mathpal MC, Agarwal A (2012) Chem Phys Lett 536:87. doi:10.1016/j.cplett.2012.03.084

    Article  CAS  Google Scholar 

  30. Mendivil MI, Krishnan B, Sanchez FA, Martinez S, Aguilar-Martinez JA, Castillo GA, Garcia-Gutierrez DI, Shaji S (2012) Appl Phys A 110:809. doi:10.1007/s00339-012-7157-2

    Article  Google Scholar 

  31. Singh SC, Mishra SK, Srivastava RK, Gopal R (2010) J Phys Chem C 114(41):17374. doi:10.1021/jp105037w

    Article  CAS  Google Scholar 

  32. Usui H, Sasaki T, Koshizaki N (2006) J Phys Chem B 110(26):12890. doi:10.1021/jp061866f

    Article  CAS  Google Scholar 

  33. Krishnan B, Arato A, Cardenas E, Roy TKD, Castillo GA (2008) Appl Surf Sci 254(10):3200. doi:10.1016/j.apsusc.2007.10.098

    Article  CAS  Google Scholar 

  34. Moulder JFSW, Sobol PE, Bumben KD (1992) Handbook of X-ray Photoelectron Spectroscopy. Perkin-Elmer Corp, Eden Prairie

    Google Scholar 

  35. Park KH, Choi J, Kim HJ, Lee JB, Son SU (2007) Chem Mater 19(16):3861. doi:10.1021/cm0712772

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to PAICYT-UANL, PROMEP and SEP-CONACYT-México (Project 106955) for the financial assistance. G. Grisel García and M. I. Mendivil Palma are grateful to CONACYT-México for providing doctoral research fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Shaji.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garza, D., Grisel García, G., Mendivil Palma, M.I. et al. Nanoparticles of antimony sulfide by pulsed laser ablation in liquid media. J Mater Sci 48, 6445–6453 (2013). https://doi.org/10.1007/s10853-013-7446-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7446-y

Keywords

Navigation