Skip to main content
Log in

3D microstructure construction and quantitative evaluation of sintered ZrO2 under different sintering conditions

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study, the microstructural evolution of yttria-stabilized ZrO2 after different sintering conditions is quantitatively presented. Focused ion beam (FIB) is used as a critical tool for sintering microstructural evolution understanding. 3D images are constructed with Amira software based on a series of 2D images obtained from FIB cutting of samples with an interval of 10 nm. Pore connectivity, pore numbers, grain-pore interfacial areas, and pore tortuosity of the sintered samples are calculated by IDL software using the 3D images. Our new tortuosity definition describes the actual sample microstructural changes while the other two in the literature fail to do so. FIB cutting and 3D microstructure reconstruction offer many new aspects of sintering microstructure that have not been available before.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lu K (2008) Int Mater Rev 53(1):21

    Article  CAS  Google Scholar 

  2. Anonymous (2005) Am Ceram Soc Bull 84(12):3

    Google Scholar 

  3. Fang ZZ, Wang H (2008) Int Mater Rev 53(6):326

    Article  CAS  Google Scholar 

  4. Kerkwijk B, Winnubst L, Mulder EJ, Verweij H (1999) J Am Ceram Soc 82(8):2087

    Article  CAS  Google Scholar 

  5. Lima RS, Marple BR (2008) Mater Sci Eng 485(1–2):182

    Google Scholar 

  6. Itatani K, Tsuchiya K, Sakka Y, Davies IJ, Koda S (2011) J Eur Ceram Soc 31(14):2641

    Article  CAS  Google Scholar 

  7. Kuang X, Carotenuto G, Nicolais L (1997) Adv Perform Mater 4(3):257

    Article  CAS  Google Scholar 

  8. Dahl P, Kaus I, Zhao Z, Johnsson M, Nygren M, Wiik K, Grande T, Einarsrud MA (2007) Ceram Int 33(8):1603

    Article  CAS  Google Scholar 

  9. Mazaheri M, Zahedi AM, Sadrnezhaad SK (2008) J Am Ceram Soc 91(1):56

    Article  CAS  Google Scholar 

  10. Conrad H, Yang D (2011) Mater Sci Eng 528(29–30):8523

    CAS  Google Scholar 

  11. Conrad H, Yang D (2013) Mater Sci Eng 559(1):591

    CAS  Google Scholar 

  12. Wilson JR, Kobsiriphat W, Mendoza R, Chen H-Y, Hiller JM, Miller DJ, Thornton K, Voorhees PW, Adler SB, Barnett SA (2006) Nat Mater 5(7):541

    Article  CAS  Google Scholar 

  13. Jasti JK, Jesion G, Feldkamp L (1993) SPE Form Eval 8(3):189

    CAS  Google Scholar 

  14. Chung HW, Wehrli FW, Williams JL, Wehrli SL (1995) J Bone Miner Res 10(10):1452

    Article  CAS  Google Scholar 

  15. Gilbe C, Ohman M, Lindstrom E, Bostrom D, Backman R, Samuelsson R, Burvalll J (2008) Energy Fuels 22(5):3536

    Article  CAS  Google Scholar 

  16. Beckmann F, Grupp R, Haibel A, Huppmann M, Noethe M, Pyzalla A, Reimers W, Schreyer A, Zettler R (2007) Adv Eng Mater 9(11):939

    Article  Google Scholar 

  17. Landis EN, Keane DT (2010) Mater Charact 61(12):1305

    Article  CAS  Google Scholar 

  18. Guan Y, Li WJ, Gong YH, Liu G, Zhang XB, Chen J, Gelb J, Yun WB, Xiong Y, Tian YC, Wang HQ (2011) J Power Sources 196(4):1915

    Article  CAS  Google Scholar 

  19. Yoshizawa N, Tanaike O, Hatori H, Yoshikawa K, Kondo A, Abe T (2006) Carbon 44(12):2558

    Article  CAS  Google Scholar 

  20. Bals S, Batenburg KJ, Verbeeck J, Sijbers J, Van Tendeloo G (2007) Nano Lett 7(12):3669

    Article  CAS  Google Scholar 

  21. Wu YQ, Tang W, Dennis KW, Oster N, McCallum RW, Anderson IE, Kramer MJ (2011) J Appl Phys 109(7):07A705

    Article  Google Scholar 

  22. Trtik P, Munch B, Gasser P, Leemann A, Loser R, Wepf R, Lura P (2011) J Microsc 241(3):234

    Article  CAS  Google Scholar 

  23. Caballero FG, Miller MK, Garcia-Mateo C (2011) Metall Mater Trans A 42A(12):3660

    Article  Google Scholar 

  24. Kuchibhatla SVNT, Shutthanandan V, Prosa TJ, Adusumilli P, Arey B, Buxbaum A, Wang YC, Tessner T, Ulfig R, Wang CM, Thevuthasan S (2012) Nanotechnology 23(21):215704

    Article  Google Scholar 

  25. Rollett AD, Lee SB, Campman R, Rohrer GS (2007) Annu Rev Mater Res 37:627

    Article  CAS  Google Scholar 

  26. Gostovic D, Smith JR, Kundinger DP, Jones KS, Wachsman ED (2007) Electrochem Solid-State Lett 10(12):B214

    Article  CAS  Google Scholar 

  27. Vivet N, Chupin S, Estrade E, Richard A, Bonnamy S, Rochais D, Bruneton E (2011) J Power Sources 196(23):9989

    Article  CAS  Google Scholar 

  28. Gunda NSK, Choi HW, Berson A, Kenney B, Karan K, Pharoah JG, Mitra SK (2011) J Power Sources 196(7):3592

    Article  CAS  Google Scholar 

  29. Chater RJ, Corni I, Boccaccini AR, Ryan MP (2011) Surf Interface Anal 43(1–2):492

    Article  CAS  Google Scholar 

  30. Cronin JS, Muangnapoh K, Patterson Z, Yakal-Kremski KJ, Dravid VP, Barnett SA (2012) J Electrochem Soc 159(4):B385

    Article  CAS  Google Scholar 

  31. Gostovic D, Vito NJ, O’Hara KA, Jones KS, Wachsmanw ED (2011) J Am Ceram Soc 94(2):620

    Article  CAS  Google Scholar 

  32. Yoon KJ, Cramer CN, Stevenson JW, Marina OA (2010) J Power Sources 195(22):7587

    Article  CAS  Google Scholar 

  33. Ahn ES, Gleason NJ, Nakahira A, Ying JY (2001) Nano Lett 1(3):149

    Article  CAS  Google Scholar 

  34. De Aza AH, Chevalier J, Fantozzi G, Schehl M, Torrecillas R (2002) Biomaterials 23(3):937

    Article  Google Scholar 

  35. Guo F, Javed A, Shapiro IP, Xiao P (2012) J Eur Ceram Soc 32(1):211

    Article  Google Scholar 

  36. Yang D, Conrad H (2010) Scr Mater 63(3):328

    Article  CAS  Google Scholar 

  37. Nettleship I, Chen T, Ewsuk K (2007) J Am Ceram Soc 90(12):3793

    CAS  Google Scholar 

  38. Obare J, Griffin WD, Conrad H (2012) J Mater Sci 47(13):5141. doi:10.1007/s10853-012-6391-5

    Article  CAS  Google Scholar 

  39. Bullitt E, Gerig G, Pizer SM, Lin WL, Aylward SR (2003) IEEE Trans Med Imaging 22(9):1163

    Article  Google Scholar 

  40. Lorenzano-Porras CF, Annen MJ, Flickinger MC, Carr PW, McCormick AV (1995) J Colloid Interface Sci 170(2):299

    Article  CAS  Google Scholar 

  41. Lorenzano-Porras CF, Carr PW, McCormick AV (1994) J Colloid Interface Sci 164(1):1

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by National Science Foundation under Grant No. CMMI-0969888.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathy Lu.

Additional information

Kathy Lu is the member of American Ceramic Society.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xia, Z., Chen, B. & Lu, K. 3D microstructure construction and quantitative evaluation of sintered ZrO2 under different sintering conditions. J Mater Sci 48, 5852–5861 (2013). https://doi.org/10.1007/s10853-013-7381-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7381-y

Keywords

Navigation