Skip to main content
Log in

Slip casting of sol–gel-synthesized barium strontium zirconium titanate ceramics

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The sol–gel method was used to synthesize two different Ba0.75Sr0.25Ti0.95Zr0.05O3 powders: one of high purity and the other of low purity. These two sol–gel-synthesized powders show two distinct particle sizes and surface areas. The slip casting method was applied to these two sol–gel powders followed by a pressureless sintering, which shows large differences in sintered density and grain size for the pressureless sintered disks. Neutron powder diffraction shows a transition to the nonpolar cubic Pm–3m space group at higher temperatures for both materials. Pair distribution function analysis was used to examine the local displacements of the Ti4+ and Zr4+ cations. The dielectric constant, loss tangent, and bias were measured on these two materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Tagantsev AK, Sherman VO, Astafiev KF, Venkatesh J, Setter N (2003) J Electroceram 11:5

    Article  CAS  Google Scholar 

  2. Vendik OG, Zubko SP, Nikol’ski MA (2002) J Appl Phys 92(12):7448

    Article  CAS  Google Scholar 

  3. Ikezi H, Wojtowicz SS, Waltz RE, deGrassie JS, Baker DR (1988) J Appl Phys 64:3277

    Article  Google Scholar 

  4. Ikezi H, DeGrassie JS, Drake J (1991) Appl Phys Lett 58(9):986

    Article  CAS  Google Scholar 

  5. Branch G, Smith PW (1996) J Phys D Appl Phys 29:2170

    Article  CAS  Google Scholar 

  6. Seddon N, Bearpark T (2003) Science 302:1537

    Article  CAS  Google Scholar 

  7. Seddon N, Spikings CR, Dolan JE (2007) IEEE pulsed power conference, pp 678–681

  8. Bragg J, Dickens J, Neuber A (2010) IEEE IPMHVC, pp 600–603

  9. Marksteiner QR, Carlsten B, Russell S (2009) J Appl Phys 106:113306

    Article  Google Scholar 

  10. Marksteiner QR, Carlsten B, Russell S (2010) Microw Opt Technol Lett 52(6):1411

    Article  Google Scholar 

  11. Jain M, Majumder SB, Katiyar RS, Bhalla AS (2004) Thin Solid Films 447–448:537

    Article  Google Scholar 

  12. Tahan D, Safari A, Klien LC (1995) J Am Ceram Soc 79(6):1593

    Article  Google Scholar 

  13. Chen C-F, Reagor DW, Russell SJ, Marksteiner QR, Earley LM, Dalmas DA, Volz HM, Guidry DR, Yang P (2011) J Am Ceram Soc 94(11):3727

    Article  CAS  Google Scholar 

  14. Reed JS (1988) Introduction to the principles of ceramic processing. Wiley, New York

    Google Scholar 

  15. Findikoglu AT, Jia QX, Campbell IH, Wu XD, Reagor D, Mombourquette CB, McMurry D (1995) Appl Phys Lett 66:3674

    Article  CAS  Google Scholar 

  16. Larson AC, Von Dreele RB (2004) Los Alamos National Laboratory, LA-UR 86-748

  17. Toby BH (2001) J Appl Crystallogr 34:210

    Article  CAS  Google Scholar 

  18. Peterson PF, Gutmann M, Proffen Th, Billinge SJL (2000) J Appl Crystallogr 33:1192

    Article  CAS  Google Scholar 

  19. Farrow CL, Juhas P, Liu JW, Bryndin D, Bozin ES, Bloch J, Proffen Th, Billinge SJL (2007) J Phys Condens Matter 19:335219

    Article  CAS  Google Scholar 

  20. Steinhauer DE, Vlahacos CP, Wellstood FC, Anlage SM, Canedy C, Ramesh R, Stanishevsky A, Melngailis J (1999) Appl Phys Lett 75:3180

    Article  CAS  Google Scholar 

  21. Marksteiner Q, Trieman M, Chen C-F, Haynes B, Dalmas D. Rev Sci Instrum (to be submitted)

  22. Halbach K, Holsinger RF (1976) Part Accel 7:213

    Google Scholar 

  23. Remcom, USA. www.remcom.com. Accessed Sept 2012

  24. Chen LF, Ong CK, Neo CP, Varadan VV, Varadan VK (2004) Microwave electronics. Wiley, Chichester

    Book  Google Scholar 

  25. Roberts S (1947) Phys Rev Lett 71:12

    Google Scholar 

  26. Ravel B, Stern EA, Vedrinskii RI, Kraizman V (1998) Ferroelectrics 206:1

    Article  Google Scholar 

  27. Laulhe C, Hippert F, Bellissent R, Simon A, Cuello GJ (2009) Phys Rev B 79:064104

    Article  Google Scholar 

  28. Jeong I-K, Park CY, Ahn JS, Park S, Kim DJ (2010) Phys Rev B 81:214119

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Drs. M. Reiten, D. Shchegolkov, and F. Krawczyk for useful discussions. We gratefully acknowledge the support of the US Department of Energy through the LANL LDRD program for this study. In addition, this study has benefited from the use of HIPD at the Lujan Center at Los Alamos Neutron Science Center, funded by DOE Office of Basic Energy Sciences. Los Alamos National Laboratory is operated by Los Alamos National Security LLC under DOE Contract DE-AC52-06NA25396.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ching-Fong Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, CF., Marksteiner, Q.R., King, G. et al. Slip casting of sol–gel-synthesized barium strontium zirconium titanate ceramics. J Mater Sci 48, 5788–5800 (2013). https://doi.org/10.1007/s10853-013-7371-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7371-0

Keywords

Navigation