Skip to main content
Log in

Soft impingement in diffusion-controlled growth of binary alloys: moving boundary effect in one-dimensional system

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The impact of soft impingement on the kinetics of diffusion-controlled growth of binary alloys is investigated. An analytical approach is developed which takes into account the process of island growth, that is the time dependence of the position of the nucleus/parent phase interface. The concentration profile, the growth law, and the kinetics of the fraction of transformed phase are computed and compared with those attained for point islands. At odd with the point island approach the local kinetics of growth depends on initial supersaturation. On the other hand, the whole transformation kinetics is in good agreement with that of the point island model with an Avrami exponent close to the theoretical value n = 0.5. The concentration profile is well described by a polynomial function in the whole spatial domain, with an exception for the initial stage of the phase separation. The effect of the spatial distribution of the nuclei on the kinetics is also studied in the model case of hard-core correlation among nuclei.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. The composition index is omitted as the diffusion of a single species will be considered.

  2. The Heaviside function is defined according to: H(x) = 1 for x > 0 and H(x) = 0 for x < 0

References

  1. Schmalzried H (1974) Solid state reactions. Academic Press, Inc., New York/London

    Google Scholar 

  2. Fanfoni M, Tomellini M (1998) Il Nuovo Cimento 20:1171

    Article  Google Scholar 

  3. Liu F, Sommer F, Bos C, Mittemeijer EJ (2007) Intern Mater Rev 52:193

    Article  CAS  Google Scholar 

  4. Starink MJ (2004) Intern Mater Rev 49:193

    Article  Google Scholar 

  5. Rios PR, Oliveira JCPT, Oliveira VT, Castro JA (2006) Mater Res 9:165

    CAS  Google Scholar 

  6. Sekimoto K (1984) Phys Lett A 105:390

    Article  Google Scholar 

  7. Birnie DP III, Weinberg MC (1995) J Chem Phys 103:3742

    Article  CAS  Google Scholar 

  8. Pusztai T, Gránásy L (1998) Phys Rev B 57:14110

    Article  CAS  Google Scholar 

  9. Kooi BJ (2004) Phys Rev B 70:224108

    Article  Google Scholar 

  10. Burbelko AA, Fraś E, Kapturkiewicz W (2005) Mater Sci Eng A 413:429

    Google Scholar 

  11. Tomellini M, Fanfoni M (1997) Phys Rev B 55:14071

    Article  CAS  Google Scholar 

  12. Shepilov MP (2004) Glass Phys Chem 30:291

    Article  CAS  Google Scholar 

  13. Shepilov MP (2004) Glass Phys Chem 30:477

    Article  CAS  Google Scholar 

  14. Alekseechkin NV (2011) J Non Cryst Solids 357:3159

    Article  CAS  Google Scholar 

  15. Crespo D, Pradell T, Clavaguera-Mora MT, Clavaguera N (1997) Phys Rev B 55:3453

    Article  Google Scholar 

  16. Tomellini M, Fanfoni M (2012) Phys Rev E 85:021606

    Article  CAS  Google Scholar 

  17. Bruna P, Crespo D, Gonzalez-Cinca R, Pineda E (2006) J Appl Phys 100:054907

    Article  Google Scholar 

  18. Pernach M, Pietrzyk M (2008) Comp Mater Sci 44:783

    Article  CAS  Google Scholar 

  19. Zener C (1949) J Appl Phys 20:950

    Article  CAS  Google Scholar 

  20. Tomellini M (2003) J Alloys Comp 348:189

    Article  CAS  Google Scholar 

  21. Zhao J, Li H, Wang Q, He J (2008) Comput Mater Sci 44:400

    Article  CAS  Google Scholar 

  22. Zhao J, Li H, Zhang X, He J (2008) Mater Lett 62:3779

    Article  CAS  Google Scholar 

  23. Bos C, Sietsma J (2007) Scripta Mater 57:1088

    Google Scholar 

  24. Chen H, van der Zwaag S (2011) J Mater Sci 46:1328. doi:10.1007/s10853-010-4922-5

    Article  CAS  Google Scholar 

  25. Tomellini M (2011) Comp Mater Sci 50:2371

    Article  CAS  Google Scholar 

  26. Song SJ, Liu F, Jiang YH (2012) J Mater Sci 47:5987. doi:10.1007/s10853-012-6504-1

    Article  CAS  Google Scholar 

  27. Tomellini M (2008) J Mater Sci 43:7102. doi:10.1007/s10853-008-3024-0s

    Article  CAS  Google Scholar 

  28. Tichonov AN, Samarskij AA (1981) In: Mir (ed) Equations of mathematical physics (in Italian). Mir Publisher, Moscow

    Google Scholar 

  29. Torquato S, Lu B, Rubinstein J (1990) Phys Rev A 41:2059

    Article  CAS  Google Scholar 

  30. Manciu M, Ruckenstein E (2004) Colloid Surf A Physicochem Eng Aspects 232:1

    Article  CAS  Google Scholar 

  31. Hillert M (1999) Acta Mater 47:4505

    Article  Google Scholar 

Download references

Acknowledgements

The author is indebted with Prof. R. Molle for the helpful discussions and comments on the mathematical aspects of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Tomellini.

Appendices

Appendix 1

The computation of Eq. 1 requires the use of the following integrals:

$$ \int\limits_{ - \xi }^{\xi } {\sin \frac{\pi nx}{\xi }} \sin \frac{\pi mx}{\xi }{\text{d}}x = \xi \delta_{n,m} $$
(14)
$$ \int\limits_{ - \xi }^{\xi } {x\sin \frac{\pi mx}{\xi }} \cos \frac{\pi nx}{\xi }{\text{d}}x = - \frac{{\xi^{2} }}{\pi }\left( {\frac{{( - )^{m + n} }}{m + n} + \frac{{( - )^{m - n} }}{m - n}} \right) = - \frac{{\xi^{2} }}{\pi }\frac{2m}{{m^{2} - n^{2} }}\;\left( {m \ne n} \right) $$
(15)
$$ \int\limits_{ - \xi }^{\xi } {x\sin \frac{\pi mx}{\xi }} \cos \frac{\pi mx}{\xi }{\text{d}}x = - \frac{{\xi^{2} }}{2\pi m}, $$
(16)

where the terms n + m and n − m are both even numbers for n and m are odd integers.

Appendix 2

The mass balance in the region 0 < x < L reads \( \int\limits_{l(t)}^{L - l(t)} {c(x,t){\text{d}}x + 2l(t)c^{(\alpha )} = c^{(0)} L} \). The derivative of this expression is \( \int\limits_{l(t)}^{L - l(t)} {\frac{\partial c}{\partial t}} {\text{d}}x + 2\dot{l}(t)(c^{(\alpha )} - c^{(\beta )} ) = 0 \) that is, using Eq. 1, \( \int\limits_{l(t)}^{L - l(t)} {\frac{\partial c}{\partial t}} {\text{d}}x + 2D\left. {\frac{\partial c}{\partial x}} \right|_{x ={l}({t}) } = 0 \). In terms of Fourier coefficients, this equation becomes

$$ \sum\limits_{n} {\left( {\dot{c}_{n} \frac{\xi }{\pi n} + c_{n} \frac{{\dot{\xi }}}{\pi n} + c_{n} \frac{\pi nD}{\xi }} \right)} = 0. $$
(17)

It is worth noting that one is not allowed to set each term in the brackets of Eq. 17 equal to zero. In fact, in this case, Eqn. 3a reduces to \( c_{m} = 4\sum\limits_{n \ne m} {\frac{mn}{{m^{2} - n^{2} }}c_{n} } \) which implies, in general, c n  = 0. On the other hand, retaining the sums in Eq. 17, compatibility between Eqs. 3a and 17 implies

$$ 4\sum\limits_{n,m \ne n} {\frac{{nc_{n} }}{{m^{2} - n^{2} }}} = \sum\limits_{m} {\frac{{c_{m} }}{m}} $$
(18)

that is \( nc_{n} \sum\limits_{m \ne n} {\frac{1}{{m^{2} - n^{2} }}} = \frac{{c_{n} }}{4n} \) and

$$ n\sum\limits_{m \ne n} {\frac{1}{{m^{2} - n^{2} }}} = \frac{1}{4n}, $$
(19)

where m and n are odd integers. In fact for n = 1 Eq. 19 is satisfied as \( \sum\limits_{m > 1}^{{}} {\frac{1}{{m^{2} - 1}}} = \frac{1}{2}\sum\limits_{m > 1}^{{}} {\left( {\frac{1}{m - 1} - \frac{1}{m + 1}} \right) = \frac{1}{4}} \sum\limits_{k = 1}^{\infty } {\left( {\frac{1}{k} - \frac{1}{k + 1}} \right)} = \frac{1}{4} \). For n > 1 Eq. 19 becomes \( \frac{1}{4}\sum\limits_{s = 1}^{\infty } {\left( {\frac{1}{s} - \frac{1}{s + n}} \right)} + \sum\limits_{m < n} {\frac{n}{{m^{2} - n^{2} }} = } \frac{1}{4n} \) which leads to \( \frac{1}{4}\sum\limits_{s = 1}^{n} {\left( {\frac{1}{s} - \frac{1}{n}} \right)} = \sum\limits_{m < n} {\frac{n}{{n^{2} - m^{2} }}} \) and, eventually, to

$$ \frac{1}{4}\sum\limits_{s = 1}^{n - 1} \frac{1}{s} = \sum\limits_{k = 0}^{{k_{n} }} {\frac{n}{{n^{2} - (2k + 1)^{2} }}} , $$
(20)

where 2k n  + 1 = n  2. It is straightforward to show that this equation holds for n = 3. The validity of Eq. 20 for all n can easily be verified by induction. In fact, if Eq. 20 is verified for n = 2r − 1 (i.e., \( \frac{1}{4}\sum\limits_{s = 1}^{2r - 2} \frac{1}{s} = (2r - 1)\sum\limits_{k = 0}^{r - 2} {\frac{1}{{(2r - 1)^{2} - (2k + 1)^{2} }}} \)), then for n = 2r + 1 (r is integer) the relation holds \( \frac{1}{4}\left( {\sum\limits_{s = 1}^{2r - 2} \frac{1}{s} + \frac{1}{(2r - 1)} + \frac{1}{(2r)}} \right) = (2r + 1)\sum\limits_{k = 0}^{r - 1} {\frac{1}{{(2r + 1)^{2} - (2k + 1)^{2} }}} \)

that is

$$ (2r - 1)\sum\limits_{k = 0}^{r - 2} {\frac{1}{{(2r - 1)^{2} - (2k + 1)^{2} }}} + \frac{1}{4(2r - 1)} + \frac{1}{4(2r)} = (2r + 1)\sum\limits_{k = 0}^{r - 1} {\frac{1}{{(2r + 1)^{2} - (2k + 1)^{2} }}} . $$
(21)

Eq. 21 is equivalent to the equality \( \sum\limits_{k = 0}^{r - 2} {\left\{ {\frac{1}{r - k - 1} + \frac{1}{r + k}} \right\}} + \frac{1}{2r - 1} + \frac{1}{2r} = \sum\limits_{k = 0}^{r - 1} {\left\{ {\frac{1}{r + k + 1} + \frac{1}{r - k}} \right\}} \) in which validity can be checked by changing the sum indexes.

Appendix 3

By equating the derivative of \( \tilde{\xi }^{2} \) as given by Eqs. 5 and 7 one obtains

$$ 2\varepsilon \rho_{1} \cong \frac{\text{d}}{{{\text{d}}\tau }}\frac{1}{{\dot{\rho }_{1} }}\left\{ {\rho_{1} - \varepsilon \frac{1}{2}\rho_{1}^{2} } \right\} $$
(22)

where terms of the order of \( \rho_{m}^{{}} \), with m ≥ 3, have been neglected when compared to \( \rho_{1} \). Equation 22 reads,

$$ 2\varepsilon \rho_{1} \cong - \frac{1}{{\dot{\rho }_{1}^{2} }}\ddot{\rho }_{1} \left\{ {\rho_{1} - \varepsilon \frac{1}{2}\rho_{1}^{2} } \right\} + 1 - \varepsilon \rho_{1}^{{}} $$
(23)

that is

$$ \frac{{{\text{d}}\ln \left| {\dot{\rho }_{1} } \right|}}{{{\text{d}}\rho_{1} }} = \frac{{1 - 3\varepsilon \rho_{1}^{{}} }}{{\rho_{1} - \frac{\varepsilon }{2}\rho_{1}^{2} }}. $$
(24)

Equation 24 leads to Eq. 9,

$$ \ln \left| {\dot{\rho }_{1} } \right| = 2\int {\frac{{1 - 3\varepsilon \rho_{1}^{{}} }}{{2\rho_{1} - \varepsilon \rho_{1}^{2} }}} {\text{d}}\rho_{1} + C, $$
(25)

where the integration constant, C, has to be determined from the initial condition \( \dot{\rho }_{1} (1) \cong - (1 - \varepsilon /2) \).

The approximation here employed is not expected to hold in the initial stage of the growth, owing to the contribution of the series. The uncertainty brings about by this approximation can be estimated by retaining the sum of the series in the short time limit (with τ ≠ 0). For τ ≪ 1 the derivative of \( \rho_{1} \) reads \( \dot{\rho }_{1} \approx - [1 - \varepsilon (1 + s_{1} (\tau ))(s_{2} (\tau ) + 1/2)] \) where \( s_{1} (\tau ) \cong \sum\limits_{n > 1} {{\text{e}}^{{ - n^{2} \tau }} } \) and \( s_{1} (\tau ) \cong \sum\limits_{n > 1} {\frac{2}{{1 - n^{2} }}{\text{e}}^{{ - n^{2} \tau }} } \) (with n odd integers). For ε = 0.5 and τ = 0.01 one obtains \( \dot{\rho }_{1} = - 0.64 \) to be compared with the value \( \dot{\rho }_{1} = - 0.75 \) used in Eq. 24. Similarly, for \( \dot{\rho }_{3} \) the computation gives \( \dot{\rho }_{3} \cong - (3.46)^{2} \) to be compared with the figure \( \dot{\rho }_{1} = - (3)^{2} \).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tomellini, M. Soft impingement in diffusion-controlled growth of binary alloys: moving boundary effect in one-dimensional system. J Mater Sci 48, 5653–5663 (2013). https://doi.org/10.1007/s10853-013-7361-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7361-2

Keywords

Navigation