Skip to main content
Log in

Electrospun TiO2-MWCNTs nanofibers as photoanode in dye-sensitized solar cell (DSSC)

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Electrospinning process was used to fabricate hybrid TiO2 nanofibrous membrane containing multi-walled carbon nanotubes (MWCNTs). The MWCNTs treated with plasma modification as established in our previous studies are dispersed in the mixture of titanium (IV) isopropoxide and poly(methyl methacrylate) in N,N-dimethylformamide prior to electrospinning. Diameter of the calcined TiO2-MWCNTs nanofibers (NFs) ranged from 100 to 200 nm, and transmission electron microscopy shows that the MWCNTs are both embedded and lying externally on the NFs. Photoanodes for dye-sensitized solar cells are prepared by first conglutinating the nanofibrous membranes onto conducting glass substrate under methanol vapor treatment followed by calcination and dye sensitization. The NFs exhibit improved conducting behavior (from 10−8 to 10−6 S/m) with small quantity (0.5–1.5 wt%) of MWCNTs. An optimum addition of 1.0 wt% MWCNTs into the TiO2 nanofibrous membrane improves the overall solar conversion efficiency by 47 % with significant increase in the short-circuit photocurrent. Electrochemical impedance spectroscopy and intensity-modulated photocurrent/photovoltage spectroscopy analyses reveal that the enhanced electron transport with smaller resistance is responsible for the improved cell performance. The results suggest that the conducting properties of the MWCNTs are crucial for faster transport of photogenerated electrons, hence retarding charge recombination that could result in poor conversion efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Iijima S (1991) Nature 354:56

    Article  CAS  Google Scholar 

  2. Chuan-Yu Y et al (2008) Nanotechnology 19:045604

    Article  Google Scholar 

  3. Ke D et al (2009) Nanotechnology 20:125603

    Article  Google Scholar 

  4. Yen CY, Lin YF, Liao SH et al (2008) Nanotechnology 19:375305

    Article  Google Scholar 

  5. Zhou W, Pan K, Tian C et al (2009) J Photochem Photobiol A 207:306

    Article  CAS  Google Scholar 

  6. Muduli S, Lee W, Dhas V et al (2009) ACS Appl Mater Interfaces 1:2030. doi:10.1021/am900396m

    Article  CAS  Google Scholar 

  7. Kongkanand A, Kamat PV (2007) ACS Nano 1:13. doi:10.1021/nn700036f

    Article  CAS  Google Scholar 

  8. A Kongkanand, R Martínez Domínguez, PV Kamat (2007) Nano Lett 7: 676. doi:10.1021/nl0627238

  9. Brown P, Takechi K, Kamat PV (2008) J Phys Chem C 112:4776. doi:10.1021/jp7107472

    Article  CAS  Google Scholar 

  10. YF Chan, CC Wang, CY Chen (2012) Progress in Photovoltaics: Research & Applications

  11. Grätzel M (2004) J Photochem Photobiol A 164:3

    Article  Google Scholar 

  12. Lee J-S, Lee Y-I, Song H, Jang D-H, Choa Y-H (2011) Curr Appl Phys 11:S210

    Article  Google Scholar 

  13. Li D, Xia Y (2003) Nano Lett 3:555. doi:10.1021/nl034039o

    Article  CAS  Google Scholar 

  14. Madhugiri S, Sun B, Smirniotis PG, Ferraris JP, Balkus KJ (2004) Microporous Mesoporous Mater 69:77

    Article  CAS  Google Scholar 

  15. Jo SM, Song MY, Ahn YR, Park CR, Kim DY (2005) J Macromol Sci Part A: Pure Appl Chem 42:1529

    Article  Google Scholar 

  16. Ding B, Kim H, Kim C, Khil M, Park S (2003) Nanotechnology 14:532

    Article  CAS  Google Scholar 

  17. Viswanathamurthi P, Bhattarai N, Kim CK, Kim HY, Lee DR (2004) Inorg Chem Commun 7:679

    Article  CAS  Google Scholar 

  18. Jose R, Kumar A, Thavasi V, Ramakrishna S (2008) Nanotechnology 19:424004

    Article  CAS  Google Scholar 

  19. Fujihara K, Kumar A, Jose R, Ramakrishna S, Uchida S (2007) Nanotechnology 18:365709. doi:10.1088/0957-4484/18/36/365709

    Article  Google Scholar 

  20. Zhang W, Zhu R, Ke L, Liu X, Liu B, Ramakrishna S (2010) Small 6:2176

    Article  CAS  Google Scholar 

  21. Joshi P, Zhang L, Davoux D et al (2010) Energy Environ Sci 3:1507

    Article  CAS  Google Scholar 

  22. Onozuka K, Ding B, Tsuge Y et al (2006) Nanotechnology 17:1026

    Article  CAS  Google Scholar 

  23. Song MY, Kim DK, Ihn KJ, Jo SM, Kim DY (2004) Nanotechnology 15:1861

    Article  CAS  Google Scholar 

  24. Lee BH, Song MY, Jang S-Y, Jo SM, Kwak S-Y, Kim DY (2009) J Phys Chem C 113:21453. doi:10.1021/jp907855x

    Article  CAS  Google Scholar 

  25. Archana PS, Jose R, Vijila C, Ramakrishna S (2009) J Phys Chem C 113:21538. doi:10.1021/jp908238q

    Article  CAS  Google Scholar 

  26. K Mukherjee, T-H Teng, R Jose, S Ramakrishna (2009) Appl Phys Lett 95

  27. Kedem S, Rozen D, Cohen Y, Paz Y (2009) J Phys Chem C 113:14893. doi:10.1021/jp9007366

    Article  CAS  Google Scholar 

  28. Kedem S, Schmidt J, Paz Y, Cohen Y (2005) Langmuir 21:5600. doi:10.1021/la0502443

    Article  CAS  Google Scholar 

  29. Hu G, Meng X, Feng X, Ding Y, Zhang S, Yang M (2007) J Mater Sci 42:7162. doi:10.1007/s10853-007-1609-7

    Article  CAS  Google Scholar 

  30. R Zhu, C-Y Jiang, X-Z Liu, B Liu, A Kumar, S Ramakrishna (2008) Appl Phys Lett 93: 013102

  31. Tseng CH, Wang CC, Chen CY (2006) Chem Mater 19:308. doi:10.1021/cm062277p

    Article  Google Scholar 

  32. Tseng CH, Wang CC, Chen CY (2006) Nanotechnology 17:5602. doi:10.1088/0957-4484/17/22/013

    Article  CAS  Google Scholar 

  33. Chen IH, Wang CC, Chen CY (2010) Plasma Process Polym 7:59

    Article  CAS  Google Scholar 

  34. Chou WJ, Wang CC, Chen CY (2008) Compos Sci Technol 68:2208

    Article  CAS  Google Scholar 

  35. Chou WJ, Wang CC, Chen CY (2008) Polym Degrad Stab 93:745

    Article  CAS  Google Scholar 

  36. Chen IH, Wang C–C, Chen C-Y (2010) J Phys Chem C 114:13532. doi:10.1021/jp103993b

    Article  CAS  Google Scholar 

  37. Chan Y-F, Wang C–C, Chen B-H, Chen C-Y (2011) Carbon 49:4898. doi:10.1016/j.carbon.2011.07.012

    Article  CAS  Google Scholar 

  38. Grätzel M, Rotzinger FP (1985) Chem Phys Lett 118:474

    Article  Google Scholar 

  39. Dror Y, Salalha W, Khalfin RL, Cohen Y, Yarin AL, Zussman E (2003) Langmuir 19:7012. doi:10.1021/la034234i

    Article  CAS  Google Scholar 

  40. Zhu K, Neale NR, Miedaner A, Frank AJ (2006) Nano Lett 7:69. doi:10.1021/nl062000o

    Article  Google Scholar 

  41. Kern R, Sastrawan R, Ferber J, Stangl R, Luther J (2002) Electrochim Acta 47:4213

    Article  CAS  Google Scholar 

  42. Bisquert J, Cahen D, Hodes G, Ruhle S, Zaban A (2004) J Phys Chem B 108:8106. doi:10.1021/jp0359283

    Article  CAS  Google Scholar 

  43. Adachi M, Sakamoto M, Jiu JT, Ogata Y, Isoda S (2006) J Phys Chem B 110:13872. doi:10.1021/jp061693u

    Article  CAS  Google Scholar 

  44. Wang Q, Zhang Z, Zakeeruddin SM, Gratzel M (2008) J Phys Chem C 112:7084. doi:10.1021/jp800426y

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research is financially supported by the National Science Council of Taiwan (NSC100-313-E-024-001-CCS and NSC 101-3113-E-024-001-CC2), and the Center for Energy Technology and Strategy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Y. Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10853_2013_7317_MOESM1_ESM.doc

Supplementary material 1 (DOC 620 kb) XRD patterns for NFs of pristine TiO2 and 1.5 wt% TiO2-MWCNTs after calcination at 400 and 500 °C

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chan, Y.F., Wang, C.C. & Chen, C.Y. Electrospun TiO2-MWCNTs nanofibers as photoanode in dye-sensitized solar cell (DSSC). J Mater Sci 48, 5261–5272 (2013). https://doi.org/10.1007/s10853-013-7317-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7317-6

Keywords

Navigation