Skip to main content
Log in

Preparation and characterization of in situ polymerized cyclic butylene terephthalate/graphene nanocomposites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Graphene-reinforced cyclic butylene terephthalate (CBT) matrix nanocomposites were prepared and characterized by mechanical and thermal methods. These nanocomposites containing different amounts of graphene (up to 5 wt%) were prepared by melt mixing with CBT that was polymerized in situ during a subsequent hot pressing. The nanocomposites and the neat polymerized CBT (pCBT) as reference material were subjected to differential scanning calorimetry, dynamical mechanical analysis, thermogravimetrical analysis, and heat conductivity measurements. The dispersion of the grapheme nanoplatelets was characterized by transmission electron microscopy. It was established that the partly exfoliated graphene worked as nucleating agent for crystallization, acted as very efficient reinforcing agent (the storage modulus at room temperature was increased by 39 and 89 % by incorporating 1- and 5-wt% graphene, respectively). Graphene incorporation markedly enhanced the heat conductivity but did not influence the TGA behavior, except the ash content, due to the not proper exfoliation except the ash content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Steeg M (2009) Prozesstechnologie für Cyclic Butylene Terephthalate im Faser–Kunststoff-verbund. Technische Universität Kaiserslautern, Kaiserslautern

    Google Scholar 

  2. Balogh G, Czigany T (2011) Plast, Rubber Compos 40(3):121. doi:10.1179/1743289811x12988633927871

    Article  CAS  Google Scholar 

  3. Yu T, Wu CM, Chang CY, Wang CY, Rwei SP (2012) Express Polym Lett 6(4):318. doi:10.3144/expresspolymlett.2012.35

    Article  CAS  Google Scholar 

  4. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 306(5696):666. doi:10.1126/science.1102896

    Article  CAS  Google Scholar 

  5. Young RJ, Kinloch IA, Gong L, Novoselov KC (2012) Compos Sci Technol 72(12):1459. doi:10.1016/j.compscitech.2012.05.005

    Article  CAS  Google Scholar 

  6. Geim AK, Novoselov KS (2007) Nat Mater 6(3):183

    Article  CAS  Google Scholar 

  7. Kim BK (2012) Express Polym Lett 6(10):772. doi:10.3144/expresspolymlett.2012.82

    Article  Google Scholar 

  8. Tjong SC (2012) Express Polym Lett 6(6):437. doi:10.3144/expresspolymlett.2012.46

    Article  Google Scholar 

  9. Kim H, Abdala AA, Macosko CW (2010) Macromolecules 43(16):6515. doi:10.1021/ma100572e

    Article  CAS  Google Scholar 

  10. Pang K, Kotek R, Tonelli A (2006) Prog Polym Sci 31(11):1009

    Article  CAS  Google Scholar 

  11. Lanciano G, Greco A, Maffezzoli A, Mascia L (2009) Thermochim Acta 493(1–2):61. doi:10.1016/j.tca.2009.04.004

    Article  CAS  Google Scholar 

  12. Berti C, Binassi E, Colonna M, Fiorini M, Zuccheri T, Karanam S, Brunelle DJ (2009) J Appl Polym Sci 114(5):3211. doi:10.1002/app.30957

    Article  CAS  Google Scholar 

  13. Tripathy AR, Burgaz E, Kukureka SN, MacKnight WJ (2003) Macromolecules 36(23):8593. doi:10.1021/ma021364+

    Article  CAS  Google Scholar 

  14. Romhány G, Vígh J, Thomann R, Karger-Kocsis J, Sajó IE (2011) Macromol Mater Eng 296(6):544. doi:10.1002/mame.201000381

    Article  Google Scholar 

  15. Baets J (2008) Toughening of in situ polymerizd cyclic butylenetrephtalate for use in continuous fiber reinforced thermoplastic composites. Katholieke Universiteit Leuven, Leuven

    Google Scholar 

  16. Cyclics Corporation (2008) Product information. Cyclics Corporaton, Schectady

    Google Scholar 

  17. Potts JR, Dreyer DR, Bielawski CW, Ruoff RS (2011) Polymer 52(1):5. doi:10.1016/j.polymer.2010.11.042

    Article  CAS  Google Scholar 

  18. XG Sciences, Inc (2011) Technical data sheet—xGnP graphene nanoplatelets—Grade H

  19. Mohd Ishak ZA, Shang P, Karger-Kocsis J (2006) J Therm Anal Calorim 84(3):637. doi:10.1007/s10973-005-7059-z

    Article  CAS  Google Scholar 

  20. Li M, Jeong YG (2011) Macromol Mater Eng 296(2):159. doi:10.1002/mame.201000295

    Article  CAS  Google Scholar 

  21. Kim JY (2009) J Appl Polym Sci 112(5):2589. doi:10.1002/app.29560

    Article  CAS  Google Scholar 

  22. Wu D, Wu L, Yu G, Xu B, Zhang M (2008) Polym Eng Sci 48(6):1057. doi:10.1002/pen.21049

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work reported has been developed in the framework of the projects “Talent care and cultivation in the scientific workshops of BME” (TÁMOP—4.2.2.B-10/1-2010-0009), and “Development of quality-oriented and harmonized R + D + I strategy and functional model at BME” (New Széchenyi Plan—Project ID: TÁMOP-4.2.1/B-09/1/KMR-2010-0002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tibor Czigány.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balogh, G., Hajba, S., Karger-Kocsis, J. et al. Preparation and characterization of in situ polymerized cyclic butylene terephthalate/graphene nanocomposites. J Mater Sci 48, 2530–2535 (2013). https://doi.org/10.1007/s10853-012-7042-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-7042-6

Keywords

Navigation