Skip to main content
Log in

Effect of silane coupling agent on mechanical performance of glass fibre

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Mechanical performance of commercially manufactured unsized and γ-aminopropylsilane sized boron-free E-glass fibres has been characterised using single-fibre tensile test. Both apparent fibre modulus and fibre strength were found to strongly depend on fibre gauge length. The average strength of sized fibres was found 40–80 % higher than unsized fibres at different gauge lengths. Weibull analysis suggested that the failure mode of unsized fibres could be described by unimodal Weibull distribution, whereas the strength distribution of sized fibres appeared to be controlled by two exclusive types of flaw population, types A and B. Comparison of the Weibull plots between unsized and sized fibres revealed that the strength of unsized fibres was likely to be dominated by type A flaws existing on the bare glass surface and type B flaws may be related to the defects on the glass surface coated with silane. This was partially supported by the observation of fractured cross-sectional area using SEM. It was, therefore, proposed that the strength difference between unsized and sized glass fibres may be more reasonably interpreted from the surface protection standpoint as opposed to the flaw healing effect. The results obtained from this study showed that silane coupling agent plays a critical role in the strength retention of commercially manufactured E-glass fibres and the silane effect on the fibre strength is also affected by the change in gauge length of the sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kolesov YI, Kudryavtsev MY, Mikhailenko NY (2001) Glass Ceram 58(5):197. doi:10.1023/a:1012386814248

    Article  CAS  Google Scholar 

  2. Wallenberger FT, Watson JC, Li H (2001) Glass fibres, vol 21. ASM handbook. ASM International, Material Park

    Google Scholar 

  3. Lowenstein KL (1993) The manufacturing technology of continuous glass fibres. Elsevier, Amsterdam

    Google Scholar 

  4. Bartenev GM, Sidorov AB (1965) Glass Ceram 22(9):597

    Article  Google Scholar 

  5. Otto WH (1955) J Am Ceram Soc 38(3):122. doi:10.1111/j.1151-2916.1955.tb14588.x

    Article  CAS  Google Scholar 

  6. Schmitz GK, Metcalfe AG (1966) Ind Eng Chem Prod Res Dev 5(1):1. doi:10.1021/i360017a001

    Article  CAS  Google Scholar 

  7. Gupta PK (2002) In: Elices M, Llorca J (eds) Fiber fracture. Elsevier Science Ltd, Oxford, p 127

    Chapter  Google Scholar 

  8. Thomason JL, Kalinka G (2001) Composites A 32(1):85. doi:10.1016/s1359-835x(00)00122-6

    Article  Google Scholar 

  9. Thomason JL, Adzima LJ (2001) Composites A 32(3–4):313. doi:10.1016/s1359-835x(00)00124-x

    Article  Google Scholar 

  10. Reilly SP, Thomason JL (2010) In: Paper presented at the 14th European conference on composite materials, ECCM14, Budapest, Hungary

  11. Zinck P, Pay MF, Rezakhanlou R, Gerard JF (1999) J Mater Sci 34(9):2121. doi:10.1023/A:1004572112470

    Article  CAS  Google Scholar 

  12. Zinck P, Mäder E, Gerard JF (2001) J Mater Sci 36(21):5245. doi:10.1023/A:1012410315601

    Article  CAS  Google Scholar 

  13. Otto WH (1961) J Am Ceram Soc 44(2):68. doi:10.1111/j.1151-2916.1961.tb15352.x

    Article  Google Scholar 

  14. Sakka S (1957) Bull Inst Chem Res Kyoto Univ 34(6):316

    CAS  Google Scholar 

  15. Feih S, Boiocchi E, Mathys G, Mathys Z, Gibson AG, Mouritz AP (2011) Composites B 42(3):350. doi:10.1016/j.compositesb.2010.12.020

    Article  Google Scholar 

  16. Feih S, Thraner A, Lilholt H (2005) J Mater Sci 40(7):1615. doi:10.1007/s10853-005-0661-4

    Article  CAS  Google Scholar 

  17. Thomason JL (2007) Polym Compos 28(3):331. doi:10.1002/pc.20260

    Article  CAS  Google Scholar 

  18. Thomason JL (1999) Compos Sci Technol 59(16):2315. doi:10.1016/s0266-3538(99)00083-4

    Article  CAS  Google Scholar 

  19. Thomason JL (1995) Composites 26(7):477. doi:10.1016/0010-4361(95)96805-g

    Article  CAS  Google Scholar 

  20. Metcalfe AG, Schmitz GK (1964) Proc ASTM 64:1075

    Google Scholar 

  21. Schmitz GK, Metcalfe AG (1965) In: 20th Anniversary technical conference, 1965. The Society of the Plastics Industry, Washington, DC

  22. Weibull W (1939) A statistical theory of the strength of materials. Handlingar, Royal Swedish Academy of Engineering Sciences 151

  23. Weibull W (1951) J Appl Mech 18:293

    Google Scholar 

  24. Thomason JL (2012) Compos Sci Technol (Submitted)

  25. Andersons J, Joffe R, Hojo M, Ochiai S (2002) Compos Sci Technol 62(1):131. doi:10.1016/s0266-3538(01)00182-8

    Article  CAS  Google Scholar 

  26. Beetz CP Jr (1982) Fibre Sci Technol 16(1):45. doi:10.1016/0015-0568(82)90015-x

    Article  CAS  Google Scholar 

  27. Beetz CP (1982) Fibre Sci Technol 16(2):81. doi:10.1016/0015-0568(82)90027-6

    Article  Google Scholar 

  28. Zinck P, Gérard JF, Wagner HD (2002) Eng Fract Mech 69(9):1049. doi:10.1016/s0013-7944(01)00121-7

    Article  Google Scholar 

  29. Zinck P, Pays MF, Rezakhanlou R, Gerard JF (1999) Philos Mag A 79(9):2103

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the funding from Engineering and Physical Sciences Research Council (EPSRC) through the project under the title of Towards Affordable, Closed-Loop Recyclable Future Low Carbon Vehicle Structures (TARF-LCV). The authors would also like to thank Owens Corning Vetrotex for providing the glass fibres used in this study. Special thanks are given to Advanced Materials Research Laboratory (AMRL) in the University of Strathclyde for the use of SEM. Finally, the authors would like to express their gratitude to the reviewer for the valuable advice on the improvement of this manuscript as well as suggestions for possible further work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, L., Thomason, J.L. Effect of silane coupling agent on mechanical performance of glass fibre. J Mater Sci 48, 1947–1954 (2013). https://doi.org/10.1007/s10853-012-6960-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6960-7

Keywords

Navigation