Skip to main content
Log in

Analysis of degradation process during the incorporation of ZrO2:SiO2 ceramic nanostructures into polyurethane coatings for the corrosion protection of carbon steel

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Three different molar ratios of ZrO2:SiO2 mixed oxides (25:75, 50:50, 75:25) were produced by the sol–gel technique and sintered at different temperatures (400, 600, 800, and 1000 °C) in order to analyze differences in mechanical and electrochemical properties of a wide variety of organic–inorganic hybrid coatings on AISI 1018 commercial carbon steel. For this purpose, 2, 4, and 6 wt% of the obtained ZrO2:SiO2 nanoparticles were incorporated to the polymeric matrix under vigorous stirring and spread on metallic substrates to reach between 40 and 55 μm of dry film. Light microscopy, scanning electron microscopy, confocal laser scanning microscopy studies, atomic force microscopy, and nanoindentation tests were used to evaluate morphological, topographical, and mechanical properties; whereas atmospheric corrosion and electrochemical impedance spectroscopy (EIS) were performed using a 3 wt% NaCl medium in continuous immersion for 226 days. The crystallite size of the as-prepared ZrO2:SiO2 nanoparticles changed according to the sintering temperature from 4 to 9 nm. It was found that an adequate dispersion and homogeneity was achieved when 2 wt% of sintered ZrO2:SiO2 nanoparticles were mechanically mixed with polymer (MDI) to produce hybrid coatings on the metallic substrate. Free-bubble surface and hardness enhancement can be achieved by adding nanostructures assuming fact that the particles are capable of occupying the gas bubble sites. Atmospheric corrosion in the coatings without reinforced particles was more severe than that observed in hybrid coatings, and for these, corrosion was higher according to the increasing zirconia molar ratio. The EIS studies indicated that the synergetic effect between the organic–inorganic phases to seal the surface enhances the barrier properties on this metallic substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Baldan A (2004) J Mater Sci 39:1. doi:10.1023/B:JMSC.0000007726.58758.e4

    Article  CAS  Google Scholar 

  2. Chattopadhyay DK, Raju KVSN (2007) Prog Polym Sci 32:352

    Article  CAS  Google Scholar 

  3. Król P (2007) Prog Mater Sci 52:915

    Article  Google Scholar 

  4. Prisacariu C, Olley RH, Caraculacu AA, Bassett DC, Martin C (2003) Polymer 44:5407

    Article  CAS  Google Scholar 

  5. Chattopadhyay DK, Prasad PSR, Sreedhar B, Raju KVSN (2005) Prog Org Coat 54:296

    Article  CAS  Google Scholar 

  6. Chattopadhyay DK, Prasad PSR, Sreedhar B, Raju KVSN (2006) Polymer 47:3814

    Article  CAS  Google Scholar 

  7. González-Guzmán J, Santana JJ, González S, Souto RM (2010) Prog Org Coat 68:240

    Article  Google Scholar 

  8. Souto RM, Fox V, Laz MM, González S (2000) J Adhes Sci Technol 14:1321

    Article  CAS  Google Scholar 

  9. Walter GW (1991) Corros Sci 32:1041

    Article  CAS  Google Scholar 

  10. Veleva L, Chin J, Del Amo B (1999) Prog Org Coat 36:211

    Article  CAS  Google Scholar 

  11. Grundmeier G, Rossenbeck B, Roschmann KJ, Ebbinghaus P, Stratmann M (2006) Corros Sci 48:3716

    Article  CAS  Google Scholar 

  12. Yang LH, Liu FC, Han E (2005) Prog Org Coat 53:91

    Article  CAS  Google Scholar 

  13. Popa MV, Drob P, Vasilescu E, Mirza-Rosca JC, Santana-Lopez A, Vasilescu C, Drob SI (2006) Mater Chem Phys 100:296

    Article  CAS  Google Scholar 

  14. Kalendova A, Veselý D, Kalenda P (2006) Pigment Resin Technol 35:83

    Article  CAS  Google Scholar 

  15. Kalendova A, Vesely D, Kalenda P (2007) Pigment Resin Technol 36:3

    Article  CAS  Google Scholar 

  16. Veselý D, Kalendová A, Němec P (2010) Surf Coat Technol 204:2032

    Article  Google Scholar 

  17. Szocinski M, Darowicki K, Schaefer K (2010) Polym Degrad Stab 95:960

    Article  CAS  Google Scholar 

  18. Njuguna J, Pielichowski K (2003) Adv Eng Mater 5:769

    Article  CAS  Google Scholar 

  19. Baer DR, Burrows PE, El-Azab AA (2003) Prog Org Coat 47:342

    Article  CAS  Google Scholar 

  20. Ash BJ, Rogers DF, Wiegand CJ, Schadler LS, Siegel RW, Benicewicz BC, Apple T (2002) Polym Compos 23:1014

    Article  CAS  Google Scholar 

  21. Ou Y, Yang F, Yu ZZ (1998) J Polym Sci, Part B: Polym Phys 36:789

    Article  CAS  Google Scholar 

  22. Zhao G, Wang T, Wang Q (2011) J Mater Sci 46:6673. doi:10.1007/s10853-011-5620-7

    Article  CAS  Google Scholar 

  23. Castro Y, Aparicio M, Moreno R, Durán A (2005) J Sol-Gel Sci Technol 3541:50

    Google Scholar 

  24. Carmona N, Villegas MA, Fernández Navarro JM (2006) Thin Solid Films 515:1320

    Article  CAS  Google Scholar 

  25. Schmidt H (2006) J Sol-Gel Sci Technol 40:115

    Article  CAS  Google Scholar 

  26. Lópes AC, Gallardo J, Durán A (2001) Bol Soc Esp Ceram 40:429

    Article  Google Scholar 

  27. Gurunathan T, Rao CRK, Narayan R, Raju KVSN (2012) J Mater Sci. doi:10.1007/s10853-012-6658-x

  28. Gomez-Romero P (2004) Functional hybrid materials. Wiley-VCH, Weinheim

    Google Scholar 

  29. Zheng SX, Li JH (2010) J Sol-Gel Sci Technol 54:174

    Article  CAS  Google Scholar 

  30. Ischenko SS, Rosovitskii VF, Pridatko AB, Babkina NV, Lebedev EV (1998) J Appl Chem 11:1929

    Google Scholar 

  31. Brinker CJ, Scherer GW (1990) Sol–gel science: the physics and chemistry of sol–gel processing. Academic Press, San Diego

    Google Scholar 

  32. Yoldas BE (1986) J Mater Sci 21:1087. doi:10.1007/BF01117399

    Article  CAS  Google Scholar 

  33. Bokhimi X, Morales A, Novaro O, López T, Sánchez E, Gómez R (1995) J Mater Res 10:2788

    Article  Google Scholar 

  34. Bokhimi X, Morales A, Novaro O, Portilla M, López T, Tzompantzi F, Gómez R (1998) J Solid State Chem 135:28

    Article  CAS  Google Scholar 

  35. Papet P, Le Bars N, Baumard JF, Lecomte A, Dauger A (1989) J Mater Sci 24:3850. doi:10.1007/BF01168946

    Article  CAS  Google Scholar 

  36. Oliver WC, Pharr GM (1992) J Mater Res 7:1564

    Article  CAS  Google Scholar 

  37. Nogami M (1986) J Mater Sci 21:3513. doi:10.1007/BF02402996

    Article  CAS  Google Scholar 

  38. Aguilar DH, Torres-Gonzalez LC, Torres-Martinez LM (2000) J Solid State Chem 158:349

    Article  Google Scholar 

  39. del Monte F, Larsen W, Mackenzi JD (2000) J Am Ceram Soc 83:628

    Article  Google Scholar 

  40. Burton AW, Ong K, Rea T, Chan IY (2009) Microporous Mesoporous Mater 117:75

    Article  CAS  Google Scholar 

  41. Scherer GW (1997) J Sol-Gel Sci Technol 8:353

    CAS  Google Scholar 

  42. Huang W, Yang J, Meng X, Cheng Y, Wang C, Zou B, Khan Z, Wang Z, Cao X (2011) Chem Eng J 168:1360

    Article  CAS  Google Scholar 

  43. Khimich NN, Semashko OV, Khimich EN, Voronkov MG (2006) Russ J Appl Chem 79:351

    Article  CAS  Google Scholar 

  44. Lamprecht A, Schäfer U, Lehr CM (2000) Int J Pharm 196:223

    Article  CAS  Google Scholar 

  45. Pidaparti RM, Rao AS (2008) Corros Sci 50:1932

    Article  CAS  Google Scholar 

  46. Bilmes PD, Llorente CL, Saire Huamán L, Gassa LM, Gervasi CA (2006) Corros Sci 48:3261

    Article  CAS  Google Scholar 

  47. Gesnouin C, Hazarabedian A, Bruzzoni P, Ovejero-García J, Bilmes P, Llorente C (2004) Corros Sci 46:1633

    Article  CAS  Google Scholar 

  48. Yasakau KA, Zheludkevich ML, Lamaka SV, Ferreira MGS (2007) Electrochim Acta 52:7651

    Article  CAS  Google Scholar 

  49. Holme B, Lunder O (2007) Corros Sci 49:391

    Article  CAS  Google Scholar 

  50. Sukamto JPH, Smyrl WH, Casillas N, Al-Odan M, James P, Jin W, Douglas L (1995) Mater Sci Eng A 198:177

    Article  Google Scholar 

  51. Leiva-García R, Muñoz-Portero MJ, García-Anton J (2009) Corros Sci 51:2080

    Article  Google Scholar 

  52. Leiva-García R, García-Antón J, Muñoz-Portero MJ (2010) Corros Sci 52:2133

    Article  Google Scholar 

  53. Wang L (2006) Chem Eng News 84:48

    Google Scholar 

  54. Nakamura M, Kobayashi M, Kuzuya N, Komatsu T, Mochizuka T (2006) Thin Solid Films 502:121

    Article  CAS  Google Scholar 

  55. Hare CH (2001) Paint film degradation: mechanism and control. SSPC The society for protective coatings, Pittsburgh, PA

    Google Scholar 

  56. Wicks ZW Jr, Jones FN, Pappas SP, Wicks DA (2007) Organic coatings science and technology, 3rd edn. Wiley, New York

    Book  Google Scholar 

  57. Williams G, McMurray HN (2003) Electrochem Commun 5:871

    Article  CAS  Google Scholar 

  58. Roberge RP (2000) Handbook of corrosion engineering. McGraw Hill, New York

    Google Scholar 

  59. Raman A, Nasrazadani S, Sharma L (1989) Metallography 22:79

    Article  CAS  Google Scholar 

  60. Razvan A, Raman A (1986) Prakt Metallogr 23:223

    CAS  Google Scholar 

  61. de la Fuente D, Díaz I, Simancas J, Chico B, Morcillo M (1998) Corros Sci 40:61

    Article  Google Scholar 

  62. Grundmeir G, Schmidt W, Stratmann M (2000) Electrochim Acta 45:2515

    Article  Google Scholar 

  63. Zhu D, Ooij WJV (2004) Prog Org Coat 49:42

    Article  CAS  Google Scholar 

  64. Ahmad S, Zafar F, Sharmin E, Garg N, Kashif M (2012) Prog Org Coat 73:112

    Article  CAS  Google Scholar 

  65. Phanasgaonkar A, Raja VS (2009) Surf Coat Technol 203:2260

    Article  CAS  Google Scholar 

  66. Vuc AS, Fir M, Jese R, Vilcnik A, Orel B (2008) Prog Org Coat 63:123

    Article  Google Scholar 

  67. Ferraz O, Cavalcanti E, Di Sarli AR (1995) Corros Sci 37:1267

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the financial support provided by CONACYT through the 133618 and 132660 projects, SIP-IPN 2012-0454, 2012-0562 and SNI-CONACYT. D. Del Angel-López is grateful for her postgraduate fellowship from SIP-IPN and CONACYT. The authors would also like to thank M. en C. María de Jesús Perea Flores, Dr. Hugo Martínez Gutiérrez, Dr. Israel Azrate Vázquez and Dr. J. Vicente Méndez for their technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Domínguez-Crespo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Del Angel-López, D., Domínguez-Crespo, M.A., Torres-Huerta, A.M. et al. Analysis of degradation process during the incorporation of ZrO2:SiO2 ceramic nanostructures into polyurethane coatings for the corrosion protection of carbon steel. J Mater Sci 48, 1067–1084 (2013). https://doi.org/10.1007/s10853-012-6839-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6839-7

Keywords

Navigation