Skip to main content
Log in

Lattice resolved annular dark-field scanning transmission electron microscopy of (Al, In)GaN/GaN layers for measuring segregation with sub-monolayer precision

  • Energy Materials & Thermoelectrics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We have performed lattice resolved annular dark-field (Z-contrast) scanning transmission electron microscopy and combined this with energy-dispersive X-ray spectroscopy as well as simulations to measure quantitatively segregation across strained interfaces in AlGaN/GaN and GaN/InGaN multiple quantum wells of nominal thicknesses between 8 and 0.25 nm. The compositional profiles obtained were corrected for detector dark current and non-linearity of the Z-contrast imaging process before we fitted exponential functions to the profiles across the interface regions. From these, we could highly accurately determine the layer widths, interface widths, and segregation lengths. Experimental values of the segregation lengths calculated varied from 0.3 nm (for InGaN-on-GaN) to 1.4 nm (for AlGaN-on-GaN), with error bars of only ±0.05 nm. A comparison with simulations based on a simple two-state-exchange model for surface segregation shows that the segregation energy for indium atoms is about an order of magnitude smaller than both the corresponding segregation energy for aluminium/gallium atoms and the activation energies for surface segregation of cations in these nitride systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Muraki K, Fukatsu S, Shiraki Y, Ito R (1992) Appl Phys Lett 61:557

    Article  CAS  Google Scholar 

  2. Mayrock O, Wünsche H-J, Henneberger F (2000) Phys Rev B 62:16870

    Article  CAS  Google Scholar 

  3. Fujita K, Fukatsu S, Yaguchi H, Shiraki Y, Ito R (1991) Appl Phys Lett 59:2240

    Article  CAS  Google Scholar 

  4. Ohtani N, Mokler SM, Xie MH, Zhang J, Joyce BA (1993) Surf Sci 284:305

    Article  CAS  Google Scholar 

  5. Walther T, Humphreys CJ, Robbins DJ (1997) Defect Diffusion Forum 143:1135

    Article  Google Scholar 

  6. Duxbury N, Bangert U, Dawson P, Thrush EJ, van der Stricht W, Jacobs K, Moerman I (2000) Appl Phys Lett 76:1600

    Article  CAS  Google Scholar 

  7. Kisielowski C, Lilienthal-Weber Z, Nakamura S (1997) Jpn J Appl Phys 36:6932

    Article  CAS  Google Scholar 

  8. Gerthsen D, Hahn E, Neubauer B, Rosenauer A, Schön O, Heuken M, Rizzi A (2000) Phys Status Solidi 177:145

    Article  CAS  Google Scholar 

  9. Moon Y-T, Kim D-J, Song K-M, Choi C-J, Han S-H, Seong T-Y, Park S-J (2001) J Appl Phys 89:6514

    Article  CAS  Google Scholar 

  10. Ruterana P, Kret S, Vivet A, Maciejewski G, Dluzweski P (2002) J Appl Phys 91:8979

    Article  CAS  Google Scholar 

  11. Ho IH, Stringfellow GB (1996) Appl Phys Lett 69:2701

    Article  CAS  Google Scholar 

  12. Humphreys CJ (2007) Philos Mag 87:1971

    Article  CAS  Google Scholar 

  13. O’Neill JP, Ross IM, Cullis AG, Wang T, Parbrook PJ (2003) Appl Phys Lett 83:1965

    Article  Google Scholar 

  14. Wang T, Bai J, Parbrook PJ, Cullis AG (2005) Appl Phys Lett 87:151906

    Article  Google Scholar 

  15. Bai J, Wang T, Parbrook PJ, Cullis AG (2006) Appl Phys Lett 89:131925

    Article  Google Scholar 

  16. Wang T, Lee KB, Bai J, Parbrook PJ, Airey RJ, Wang Q, Hill G, Ranalli F, Cullis AG (2006) Appl Phys Lett 89:081126

    Article  Google Scholar 

  17. Ross IM, Walther T (2012) J Phys Conf Ser 371:012012

    Article  Google Scholar 

  18. Walther T (2006) J Microsc 221:137

    Article  CAS  Google Scholar 

  19. Qiu Y, Lari L, Ross IM, Walther T (2011) J Phys Conf Ser 326:012041

    Article  Google Scholar 

  20. Harris JJ, Ashenford DE, Foxon CT, Dobson PJ, Joyce BA (1984) Appl Phys A 33:87

    Article  Google Scholar 

  21. Fukatsu S, Fujita K, Yaguchi H, Shiraki Y, Ito R (1991) Appl Phys Lett 59:2103

    Article  CAS  Google Scholar 

  22. Godbey DJ, Lill JV, Deppe J, Hobart KD (1994) Appl Phys Lett 65:711

    Article  CAS  Google Scholar 

  23. Yang B, Brandt O, Jenichen B, Müllhäuser J, Ploog KH (1997) J Appl Phys 82:1918

    Article  CAS  Google Scholar 

  24. Stanley I, Coleiny G, Venkat R (2003) J Cryst Growth 251:23

    Article  CAS  Google Scholar 

  25. Choi S, Kim T-H, Wolter S, Brown A, Everittt HO, Losurdo M, Bruno G (2008) Phys Rev B 77:115435

    Article  Google Scholar 

  26. Dussaigne A, Damilano B, Grandjean N, Massies J (2003) J Cryst Growth 251:471

    Article  CAS  Google Scholar 

  27. Liu B, Zhang R, Zheng JG, Ji XL, Fu DY, Xie ZL, Chen DJ, Chen P, Jiang RL, Zheng YD (2011) Appl Phys Lett 98:261916

    Article  Google Scholar 

  28. Amari H, Ross IM, Wang T, Walther T (2012) J Phys Conf Ser 371:012014

    Article  Google Scholar 

  29. Amari H, Lari L, Zhang HY, Geelhaar L, Chèze C, Kappers MJ, McAleese C, Humphreys CJ, Walther T (2011) J Phys Conf Ser 326:012028

    Article  Google Scholar 

  30. Amari H, Kappers MJ, Humphreys CJ, Chèze C, Walther T (2012) Phys Status Solidi C 9:1079

    Article  CAS  Google Scholar 

  31. Amari H, Ross IM, Wang T, Walther T (2012) Phys Status Solidi C 9:546

    Article  CAS  Google Scholar 

  32. Walther T (2010) J Phys Conf Ser 209:012029

    Article  Google Scholar 

  33. Walther T (2010) J Phys Conf Ser 241:012016

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Walther.

Additional information

Paper presented at E-MRS meeting, Strasbourg, 16 May 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walther, T., Amari, H., Ross, I.M. et al. Lattice resolved annular dark-field scanning transmission electron microscopy of (Al, In)GaN/GaN layers for measuring segregation with sub-monolayer precision. J Mater Sci 48, 2883–2892 (2013). https://doi.org/10.1007/s10853-012-6822-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6822-3

Keywords

Navigation