Skip to main content
Log in

Dispersion and rheology of polypropylene/organoclay nanocomposites: effect of cation exchange capacity and number of alkyl tails

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Nanocomposites of montmorillonite organoclays and polypropylene (PP) were prepared via direct melt intercalation using maleic anhydride functionalized polypropylene (PP-g-MA) as a compatibilizer. Two montmorillonite clays (MMT) with different cation exchange capacities (CEC) were exchanged with alkyl ammonium ions, in which one or two octadecyl chains are attached to the nitrogen atom. The role of alkyl chain numbers and CEC value on the dispersion of clay and rheology of PP nanocomposites under shear and extensional flow was evaluated by X-ray diffraction, scanning electron microscopy, and rheologic techniques. It was found that the low-CEC organoclay with one alkyl chain could only form a conventional composite. However, the low-CEC organoclay with two alkyl chains or high-CEC organoclay with one alkyl chain can disperse finely in the matrix. Nanocomposites containing these two organoclays showed typical shear rheologic properties of intercalated nanocomposites, but only the former showed a mild strain-hardening behavior in uniaxial extensional flow. When using an intercalant with two tails, the high-CEC clay would lead the organoclay to form mixed structures which further resulted in an inferior dispersion quality. It was proposed that the dispersion quality and rheologic properties of nanocomposites were related to the arrangement of modifier molecules in the clay galleries, which was determined by the CEC of clay and the structure of alkyl ammonium ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Alexandre M, Dubois P (2000) Mater Sci Eng 28(1–2):1

    Google Scholar 

  2. Vermant J, Ceccia S, Dolgovskij M, Maffettone P, Macosko C (2007) J Rheol 51:429

    Article  CAS  Google Scholar 

  3. Yoo Y, Paul D (2008) Polymer 49(17):3795

    Article  CAS  Google Scholar 

  4. Solomon MJ, Almusallam AS, Seefeldt KF, Somwangthanaroj A, Varadan P (2001) Macromolecules 34(6):1864

    Article  CAS  Google Scholar 

  5. Hotta S, Paul D (2004) Polymer 45(22):7639

    Article  CAS  Google Scholar 

  6. Reichert P, Nitz H, Klinke S, Brandsch R, Thomann R, Mülhaupt R (2000) Macromol Mater Eng 275(1):8

    Article  CAS  Google Scholar 

  7. Galgali G, Ramesh C, Lele A (2001) Macromolecules 34(4):852

    Article  CAS  Google Scholar 

  8. Rajabian M, Naderi G, Dubois C, Lafleur PG (2010) Rheol Acta 49(1):105

    Article  CAS  Google Scholar 

  9. Okamoto M, Nam PH, Maiti P, Kotaka T, Hasegawa N, Usuki A (2001) Nano Lett 1(6):295

    Article  CAS  Google Scholar 

  10. Hwan Lee S, Cho ENR, Youn JR (2007) J Appl Polym Sci 103(6):3506

    Article  Google Scholar 

  11. Kanny K, Jawahar P, Moodley V (2008) J Mater Sci 43(22):7230. doi:10.1007/s10853-008-2938-x

    Article  CAS  Google Scholar 

  12. Dong Y, Bhattacharyya D (2012) J Mater Sci 47(8):3900. doi:10.1007/s10853-012-6248-y

    Article  CAS  Google Scholar 

  13. Shah RK, Hunter D, Paul D (2005) Polymer 46(8):2646

    Article  CAS  Google Scholar 

  14. Bae SB, Kim CK, Kim K, Chung IJ (2008) Eur Polym J 44(11):3385

    Article  CAS  Google Scholar 

  15. Chavarria F, Paul D (2006) Polymer 47(22):7760

    Article  CAS  Google Scholar 

  16. Fornes T, Yoon P, Hunter D, Keskkula H, Paul D (2002) Polymer 43(22):5915

    Article  CAS  Google Scholar 

  17. Fornes T, Hunter D, Paul D (2004) Macromolecules 37(5):1793

    Article  CAS  Google Scholar 

  18. Velasco J, Ardanuy M, Realinho V, Antunes M, Fernández A, González-Peña J, Rodríguez-Pérez M, de Saja J (2006) J Appl Ploym Sci 102(2):1213

    Article  CAS  Google Scholar 

  19. Janowska G, Mikołajczyk T, Olejnik M (2008) J Therm Anal Calorim 92(2):495

    Article  CAS  Google Scholar 

  20. Ratinac KR, Gilbert RG, Ye L, Jones AS, Ringer SP (2006) Polymer 47(18):6337

    Article  CAS  Google Scholar 

  21. Sheng D, Tan J, Liu X, Wang P, Yang Y (2011) J Mater Sci 46(20):6508. doi:10.1007/s10853-011-5597-2

    Article  CAS  Google Scholar 

  22. Kornmann X, Lindberg H, Berglund LA (2001) Polymer 42(4):1303

    Article  CAS  Google Scholar 

  23. Lan T, Pinnavaia TJ (1994) Chem Mater 6(12):2216

    Article  CAS  Google Scholar 

  24. Osman MA, Rupp JEP, Suter UW (2005) J Mater Chem 15(12):1298

    CAS  Google Scholar 

  25. Osman MA, Rupp JEP, Suter UW (2005) Polymer 46(5):1653

    Article  CAS  Google Scholar 

  26. Fornes T, Yoon P, Keskkula H, Paul D (2001) Polymer 42(25):09929

    Article  CAS  Google Scholar 

  27. Xidas PI, Triantafyllidis KS (2010) Eur Ploym J 46(3):404

    Article  CAS  Google Scholar 

  28. Sanchez-Solis A, Garcia-Rejon A, Estrada M, Martinez-Richa A, Sanchez G, Manero O (2005) Polym Int 54(12):1669

    Article  CAS  Google Scholar 

  29. De Paiva LB, Morales AR, Valenzuela Díaz FR (2008) Appl Clay Sci 42(1–2):8

    Article  Google Scholar 

  30. Hodder P, Franck A (2005) Ann Trans Nord Rheol Soc 13:227

    Google Scholar 

  31. Rohlmann CO, Horst MF, Quinzani LM, Failla MD (2008) Eur Ploym J 44(9):2749

    Article  CAS  Google Scholar 

  32. Leszczynska A, Njuguna J, Pielichowski K, Banerjee J (2007) Thermochim Acta 454(1):1

    Article  CAS  Google Scholar 

  33. Pozsgay A, Fráter T, Százdi L, Müller P, Sajó I, Pukánszky B (2004) Eur Polym J 40(1):27

    Article  CAS  Google Scholar 

  34. Li J, Ton-That MT, Tsai SJ (2006) Polym Eng Sci 46(8):1060

    Article  CAS  Google Scholar 

  35. Xie W, Gao Z, Pan WP, Hunter D, Singh A, Vaia R (2001) Chem Mater 13(9):2979

    Article  CAS  Google Scholar 

  36. LeBaron PC, Wang Z, Pinnavaia TJ (1999) Appl Clay Sci 15(1–2):11

    Article  CAS  Google Scholar 

  37. Park CI, Kim MH, Ok Park O (2004) Polymer 45(4):1267

    Article  CAS  Google Scholar 

  38. Yoon J, Jo W, Lee M, Ko M (2001) Polymer 42(1):329

    Article  CAS  Google Scholar 

  39. Prasad R, Pasanovic-Zujo V, Gupta RK, Cser F, Bhattacharya SN (2004) Polym Eng Sci 44(7):1220

    Article  CAS  Google Scholar 

  40. Ohl N, Gleissle W (1993) J Rheol 37(2):381

    Article  CAS  Google Scholar 

  41. Lertwimolnun W, Vergnes B (2005) Polymer 46(10):3462

    Article  CAS  Google Scholar 

  42. Krishnamoorti R, Ren J, Silva AS (2001) J Chem Phys 114(11):4968

    Article  CAS  Google Scholar 

  43. Kim DH, Fasulo PD, Rodgers WR, Paul DR (2007) Polymer 48(18):5308

    Article  CAS  Google Scholar 

  44. Lee A, Lichtenhan JD (1999) J Appl Ploym Sci 73(10):1993

    Article  CAS  Google Scholar 

  45. Letwimolnun W, Vergnes B, Ausias G, Carreau PJ (2007) J Non-Newton Fluid Mech 141(2):167

    Article  CAS  Google Scholar 

  46. Li Q, Yang Q, Huang Y, Chen G, Lv Y (2012) J Macromol Sci Phys. doi:10.1080/00222348.2012.659638

    Google Scholar 

  47. Tanoue S, Utracki LA, Garcia-Rejon A, Sammut P, Ton-That MT, Pesneau I, Kamal MR, Lyngaae-Jørgensen J (2004) Polym Eng Sci 44(6):1061

    Article  CAS  Google Scholar 

  48. Singh S, Ghosh AK, Maiti SN, Raha S, Gupta RK, Bhattacharya S (2012) Polym Eng Sci 52(1):225

    Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support from the Program for New Century Excellent Talents in University (NCET-10-0576), State Education Ministry, and the National Science Foundation of China (51003062). This work was also sponsored by the International Science & Technology Cooperation Program of China (2010DFA54460) and State Key Laboratory Special Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Q., Zeng, Q., Huang, Y. et al. Dispersion and rheology of polypropylene/organoclay nanocomposites: effect of cation exchange capacity and number of alkyl tails. J Mater Sci 48, 948–959 (2013). https://doi.org/10.1007/s10853-012-6820-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6820-5

Keywords

Navigation