Skip to main content
Log in

Fabrication and characterisation of polypropylene nanofibres by meltblowing process using different fluids

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In nonwoven industry, meltblowing has been widely used as an important technique for the production of nonwoven webs consisting of microfibres, suitable for various applications. Recently, great attention is being paid to fabricate nonwoven webs consisting of nanofibres, commonly known as nanowebs. In this paper, polypropylene has been successfully used for the fabrication of nanowebs by meltblowing process with the injection of different fluids (such as air and water) at the vent port of commercial meltblowing equipment. The lowest average fibre diameters achieved were 755 and 438 nm by the use of air and water, respectively. Differential scanning calorimetry results showed the presence of single melting peaks in the first heating cycle and double melting peaks in the second, due to the re-crystallisation and re-organisation by heating during the experiments. The results obtained from thermo gravimetric analysis and intrinsic viscosity studies showed thermal degradation of the nanofibres during meltblowing. X-ray diffraction studies showed that all the meltblown polypropylene fibres produced with the injection of the fluids contained low degrees of crystallinity and monoclinic α-form crystals. The crystallinity was increased with annealing. Similar Fourier transform infrared spectra of the polymer and the fibres indicated no change to the chemical functionality of the nanofibres by the application of the fluids and high temperature during meltblowing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Natta G, Corradini P (1960) Nuovo Cimento (1955–1965) 15:40

    Article  CAS  Google Scholar 

  2. Lee S, Obendorf SK (2006) J Appl Polym Sci 102:3430

    Article  CAS  Google Scholar 

  3. Velu Y, Farer R, Ghosh T, Seyam A (2000) J Text Appar Technol Manage 1:1

    Google Scholar 

  4. Karger-Kocsis J (1995) Polypropylene: structure, blends and composites. Springer Publication, Berlin

  5. Li D, Xia Y (2004) Adv Mater 16:1151

    Article  CAS  Google Scholar 

  6. Cengiz F, Jirsak O (2009) Fiber Polym 10:177

    Article  CAS  Google Scholar 

  7. Doshi J, Reneker DH (1995) J Electrost 35:151

    Article  CAS  Google Scholar 

  8. Greiner A, Wendorff JH (2007) Angew Chem Int Ed 46:5670

    Article  CAS  Google Scholar 

  9. Wang X, Huang Z (2010) Chin J Polym Sci 28:45

    Article  Google Scholar 

  10. Kadomae Y, Maruyama Y, Sugimoto M, Taniguchi T, Koyama K (2009) Fiber Polym 10:275

    Article  CAS  Google Scholar 

  11. Malakhov S, Khomenko AY, Belousov S, Prazdnichnyi A, Chvalun S, Shepelev A, Budyka A (2009) Fibre Chem 41:1

    Article  Google Scholar 

  12. Nayak R, Kyratzis IL, Truong YB, Padhye R, Arnold L (2012) J Mater Sci (Springer Publications). doi:10.1007/s10853-012-6563-3

    Google Scholar 

  13. Nayak R, Kyratzis IL, Truong YB, Padhye R, Arnold L, Peeters G, Nichols L, O’Shea M (2012) Adv Mater Res 472:1294

    Article  Google Scholar 

  14. Pinchuk LS (2002) Melt blowing: equipment, technology, and polymer fibrous materials. Springer Verlag, Berlin

  15. Zhang D, Sun C, Beard J, Brown H, Carson I, Hwo C (2002) J Appl Polym Sci 83:1280

    Article  CAS  Google Scholar 

  16. Wang X, Ke Q (2006) Polym Eng Sci 46:1

    Article  Google Scholar 

  17. Yu J, Fridrikh S, Rutledge G (2006) Polymer 47:4789

    Article  CAS  Google Scholar 

  18. Funada T, Joseph D (2003) J Nonnewton Fluid Mech 111:87

    Article  CAS  Google Scholar 

  19. McKee M, Park T, Unal S, Yilgor I, Long T (2005) Polymer 46:2011

    Article  CAS  Google Scholar 

  20. Marla V, Shambaugh R (2004) Ind Eng Chem Res 43:2793

    Article  Google Scholar 

  21. Ellison C, Phatak A, Giles D, Macosko C, Bates F (2007) Polymer 48:3306

    Article  CAS  Google Scholar 

  22. Lee Y, Wadsworth LC (1990) Polym Eng Sci 30:1413

    Article  CAS  Google Scholar 

  23. Grafe T, Graham K (2003) Int Nonwovens J 12:51

    CAS  Google Scholar 

  24. Inai R, Kotaki M, Ramakrishna S (2005) Nanotechnology 16:208

    Article  CAS  Google Scholar 

  25. Cho D, Zhou H, Cho Y, Audus D, Joo YL (2010) Polymer 51:6005

    Article  CAS  Google Scholar 

  26. Trimble LE (1989) The potential for meltblowning. Meltblown technology today. Miller Freeman Publications, San Francisco

    Google Scholar 

  27. Machado A, Maia J, Canevarolo S, Covas J (2004) J Appl Polym Sci 91:2711

    Article  CAS  Google Scholar 

  28. Liang S, Hu D, Zhu C, Yu A (2002) Chem Eng Technol 25:401

    Article  CAS  Google Scholar 

  29. Kayser JC, Shambaugh RL (1990) Polym Eng Sci 30:1237

    Article  CAS  Google Scholar 

  30. Ferrer-Balas D, Maspoch ML, Martinez A, Santana O (2001) Polymer 42:1697

    Article  CAS  Google Scholar 

  31. Kirshenbaum I, Wilchinsky Z, Groten B (1964) J Appl Polym Sci 8:2723

    Article  CAS  Google Scholar 

  32. Wochowicz A, Eder M (1984) Polymer 25:1268

    Article  Google Scholar 

  33. Scholte TG, Meijerink N, Schoffeleers H, Brands A (1984) J Appl Polym Sci 29:3763

    Article  CAS  Google Scholar 

  34. Frost K, Kaminski D, Kirwan G, Lascaris E, Shanks R (2009) Carbohydr Polym 78:543

    Article  CAS  Google Scholar 

  35. Farrow G, Preston D (1960) Br J Appl Phys 11:353

    Article  CAS  Google Scholar 

  36. Paukkeri R, Lehtinen A (1993) Polymer 34:4083

    Article  CAS  Google Scholar 

  37. Lee Y, Wadsworth LC (1992) Polymer 33:1200

    Article  CAS  Google Scholar 

  38. Broda J, Wochowicz A (2000) Eur Polymer J 36:1283

    Article  CAS  Google Scholar 

  39. Machado G, Denardin E, Kinast E, Gonçalves M, De Luca M, Teixeira S, Samios D (2005) Eur Polymer J 41:129

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support provided by RMIT University-HDRPA. The technical support from Muthu Pannirselvam and Mike Allan (Rheology and Materials Processing Centre, School of Civil, Environmental and Chemical Engineering, RMIT University); Phil Francis, Peter Rummel, Matthew Field and Frank Antolasic (School of Applied Sciences, RMIT University); Mark Greaves and John Ward (Scanning Electron Microscopy, Digital Imaging and Surface Analysis Facility of MSE, CSIRO, Clayton); Liz Goodall and Winston Liew (Materials Characterisation Services of MSE, CSIRO, Clayton); Mark Hickey, Wendy Tian, Fiona Glenn, Tim Hughes and Roger Mulder (MSE, CSIRO, Clayton); David Sutton and Peter Kouwenoord (Lyondellbasell) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajiv Padhye.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nayak, R., Kyratzis, I.L., Truong, Y.B. et al. Fabrication and characterisation of polypropylene nanofibres by meltblowing process using different fluids. J Mater Sci 48, 273–281 (2013). https://doi.org/10.1007/s10853-012-6742-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6742-2

Keywords

Navigation