Skip to main content
Log in

Fabrication of an alternative regenerated silk fibroin nanofiber and carbonated hydroxyapatite multilayered composite via layer-by-layer

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A novel multilayered composite consisting of regenerated silk fibroin (RSF) nanofiber and carbonated hydroxyapatite (CHA) was fabricated with the combination of electrospinning of RSF aqueous solution and soaking in CaCl2 and Na2HPO4 solutions alternately. The chemical composition and morphologies of RSF/CHA composite were characterized by FT-IR, XRD, TGA, EDX, and SEM. The results showed that such an organic/inorganic composite had an alternate layered structure, while the CHA mineral partly penetrated into the porous RSF mats, which was similar to the structure of natural nacre. By tuning the CHA deposition procedure and RSF electrospinning condition independently, the thickness of each layer of CHA and RSF, as well as the layer numbers of composite, could be easily regulated. For example, the average thickness of CHA layers with 5 and 10 mineralization cycles were 1.63 and 3.19 μm, while 9.03 and 30.12 μm of porous RSF nanofiber layers could be formed with 7 and 24 h electrospinning process, respectively. Thus, it may provide an efficient and general approach to produce a series of inorganic/organic multilayered biomaterials for biomedical engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mann S (1988) Nature 332(6160):119–124

    Article  CAS  Google Scholar 

  2. Weiner S, Addadi L (1997) J Mater Chem 7(5):689–702

    Article  CAS  Google Scholar 

  3. Cheng C, Yang YH, Chen X, Shao ZZ (2008) Chem Commun 43:5511–5513

    Article  Google Scholar 

  4. Sellinger A, Weiss PM, Nguyen A, Lu YF, Assink RA, Gong WL, Brinker CJ (1998) Nature 394(6690):256–260

    Article  CAS  Google Scholar 

  5. Wei H, Ma N, Shi F, Wang ZQ, Zhang X (2007) Chem Mater 19(8):1974–1978

    Article  CAS  Google Scholar 

  6. Cheng C, Shao ZZ, Vollrath F (2008) Adv Funct Mater 18(15):2172–2179

    Article  CAS  Google Scholar 

  7. Landi E, Celotti G, Logroscino G, Tampieri A (2003) J Eur Ceram Soc 23(15):2931–2937

    Article  CAS  Google Scholar 

  8. Kikuchi M, Itoh S, Ichinose S, Shinomiya K, Tanaka J (2001) Biomaterials 22(13):1705–1711

    Article  CAS  Google Scholar 

  9. Woo KM, Jun J-H, Chen VJ, Seo J, Baek J-H, Ryoo H-M, Kim G-S, Somerman MJ, Ma PX (2007) Biomaterials 28(2):335–343

    Article  CAS  Google Scholar 

  10. Matsumura K, Hyon S-H, Nakajima N, Tsutsumi S (2007) J Biomed Mater Res A 82A(2):288–295

    Article  CAS  Google Scholar 

  11. Bigi A, Boanini E, Panzavolta S, Roveri N, Rubini K (2002) J Biomed Mater Res 59(4):709–715

    Article  CAS  Google Scholar 

  12. Kim HJ, Kim U-J, Kim HS, Li C, Wada M, Leisk GG, Kaplan DL (2008) Bone 42(6):1226–1234

    Article  CAS  Google Scholar 

  13. Wang T, Che RC, Li WT, Mi RX, Shao ZZ (2011) Cryst Growth Des 11(6):2164–2171

    Article  CAS  Google Scholar 

  14. Wu YD, Cheng C, Yao JR, Chen X, Shao ZZ (2011) Langmuir 27(6):2804–2810

    Article  CAS  Google Scholar 

  15. Tsukada M, Goto Y, Freddi G, Shiozaki H, Ishikawa H (1992) J Appl Polym Sci 45(10):1719–1725

    Article  CAS  Google Scholar 

  16. Tanahashi M, Matsuda T (1997) J Biomed Mater Res 34(3):305–315

    Article  CAS  Google Scholar 

  17. Sato K, Kumagai Y, Tanaka T (2000) J Biomed Mater Res 50(1):16–20

    Article  CAS  Google Scholar 

  18. Zhou L, Chen X, Shao ZZ, Huang YF, Knight DP (2005) J Phys Chem B 109:16937–16945

    Article  CAS  Google Scholar 

  19. Du C, Jin J, Li Y, Kong X, Wei K, Yao J (2009) Mater Sci Eng C 29(1):62–68

    Article  Google Scholar 

  20. Fan CQ, Li JS, Xu GH, He HL, Ye XJ, Chen YY, Sheng XH, Fu JW, He DN (2010) J Mater Sci 45(21):5814. doi:10.1007/s10853-010-4656-4

    Article  CAS  Google Scholar 

  21. Kino R, Ikorna T, Yunoki S, Nagai N, Tanaka J, Asakura T, Munekata M (2007) J Biosci Bioeng 103(6):514–520

    Article  CAS  Google Scholar 

  22. Li CM, Jin HJ, Botsaris GD, Kaplan DL (2005) J Mater Res 20(12):3374–3384

    Article  CAS  Google Scholar 

  23. Cao H, Chen X, Huang L, Shao ZZ (2009) Mater Sci Eng C 29(7):2270–2274

    Article  Google Scholar 

  24. Minoura N, Aiba SI, Higuchi M, Gotoh Y, Tsukada M, Imai Y (1995) Biochem Biophys Res Commun 208(2):511–516

    Article  CAS  Google Scholar 

  25. Wei K, Li Y, Kim K-O, Nakagawa Y, Kim B-S, Abe K, Chen G-Q, Kim I-S (2011) J Biomed Mater Res Part A 97:272–280

    Article  Google Scholar 

  26. Ruan YH, Lin H, Yao JR, Chen ZR, Shao ZZ (2011) Macromol Biosci 11:419–426

    Article  CAS  Google Scholar 

  27. Shao ZZ, Chen X, Zhou L (2004) Chinese Patent ZL03142201.2

  28. Furuzono T, Taguchi T, Kishida A, Akashi M, Tamada Y (2000) J Biomed Mater Res 50(3):344–352

    Article  CAS  Google Scholar 

  29. Chen X, Shao ZZ, Knight DP, Vollrath F (2002) Acta Chim Sinica 60(12):2203–2208

    CAS  Google Scholar 

  30. Zhou W, Chen X, Shao ZZ (2006) Prog Chem 18(11):1514–1522

    CAS  Google Scholar 

  31. Xu GF, Aksay IA, Groves JT (2001) J Am Chem Soc 123(10):2196–2203

    Article  CAS  Google Scholar 

  32. Landi E, Tampieri A, Celotti G, Vichi L, Sandri M (2004) Biomaterials 25(10):1763–1770

    Article  CAS  Google Scholar 

  33. Zou S, Huang J, Best S, Bonfield W (2005) J Mater Sci Mater Med 16(12):1143–1148

    Article  CAS  Google Scholar 

  34. Zhang RY, Ma PX (2004) Macromol Biosci 4(2):100–111

    Article  CAS  Google Scholar 

  35. Wu Y-S, Lee Y-H, Chang H-C (2009) Mater Sci Eng C 29(1):237–241

    Article  CAS  Google Scholar 

  36. Chen J, Chu B, Hsiao BS (2006) J Biomed Mater Res A 79A(2):307–317

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC 20974024 and 21034003) and 973 Project of Chinese Ministry of Science and Technology (No. 2009CB930000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinrong Yao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, H., Chen, X., Yao, J. et al. Fabrication of an alternative regenerated silk fibroin nanofiber and carbonated hydroxyapatite multilayered composite via layer-by-layer. J Mater Sci 48, 150–155 (2013). https://doi.org/10.1007/s10853-012-6722-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6722-6

Keywords

Navigation