Skip to main content
Log in

Hydration-induced reinforcement of rigid polyurethane–cement foams: mechanical and functional properties

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Mechanical and functional properties of a newly proposed hybrid foam based on rigid polyurethane foam and Portland cement for application in the building field are herein reported. The hybrid is characterized by the co-continuity of the two phases, hydrated cement and polyurethane, which cooperate in a synergistic way to the properties of the resulting material. Furthermore, the closed-cell foam structure gives the material properties typical of porous materials: in particular, the hybrid foam evidences thermal insulation, sound absorption and acoustic insulation, high impact energy and low density typical of polymeric foams. At the same time, the hybrid foam exhibits water vapor permeability, improvement of thermal stability, high compressive mechanical behavior, and adhesion to concrete and mortars typical of inorganic binders such as cement. The materials were obtained by mixing cement powder with polyurethane foam precursors, i.e., methylene di(phenyl-isocyanate), polyol polyether and catalysts, and silicone surfactants. Water was used as blowing reagent. The resulting compounds were foamed in flat closed molds. The cement phase was then allowed to hydrate in accelerated conditions, i.e., in water at 60 °C for 72 h. Mechanical, morphological, and functional characterization showed that the hydrated cement particles interacted with each other, forming an inorganic network within the polymeric matrix (co-continuity), thus “hydration-induced reinforcement of polymer–cement” hybrid foam, in contraposition with the term “composite foam.”

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hilyard NC, Cunningham A (eds) (1994) Low density cellular plastics physical basis of behavior. Chapman and Hall, New York

    Google Scholar 

  2. Randall D, Lee S (eds) (2002) The polyurethanes book—Huntsman polyurethane. Wiley, New York

    Google Scholar 

  3. Kim SH, Park HC, Jeong HM, Kim BK (2010) J Mater Sci 45:2675. doi:10.1007/s10853-010-4248-3

    Article  CAS  Google Scholar 

  4. Hararak B, Prakymoramas N, Rungseesantivanon W, Thamumjitr D (2010) In: Suttiruengwong S, Sricharussin W (eds) Advanced material research-functionalized and sensing materials. Trans Tech Publishing, Bangkok, Thailand

  5. Nikje MMA (2010) Polym Eng Sci 50:468

    Article  CAS  Google Scholar 

  6. Kang JW, Kim JM, Kim MS, Kim YH, Kim WN, Jang W, Shin DS (2009) Macromol Res 17:856

    Article  CAS  Google Scholar 

  7. Yuan J, Shi SQ (2009) J Appl Polym Sci 113:2902

    Article  CAS  Google Scholar 

  8. Tien YI, Wei KH (2002) J Appl Polym Sci 86:1741

    Article  CAS  Google Scholar 

  9. Novak I, Krupa I, Chodak I (2002) J Mater Sci Lett 21:1039

    Article  CAS  Google Scholar 

  10. Verdolotti L, Di Maio E, Lavorgna M, Iannace S (2006) A foamed polymer-inorganic binder hybrid material controller density and morphology, method for its preparation and uses thereof. WO2008/007187

  11. Verdolotti L, Di Maio E, Lavorgna M, Iannace S (2008) J Appl Polym Sci 107:1

    Article  CAS  Google Scholar 

  12. Verdolotti L, Di Maio E, Forte G, Lavorgna M, Iannace S (2010) J Mater Sci 45:3388. doi:10.1007/s10853-010-4416-5

    Article  CAS  Google Scholar 

  13. Escalante-Garcia JI, Sharp JH (1998) Cem Concr Res 28:1245

    Article  CAS  Google Scholar 

  14. Iñiguez-Sánchez CA, Gómez-Zamorano LY, Alonso MC (2012) J Mater Sci 41:3639. doi:10.1007/s10853-011-6210-4

    Article  Google Scholar 

  15. Ray I, Gupta AP, Biswas M (1996) Cem Concr Compos 18:343

    Article  CAS  Google Scholar 

  16. Taylor HFW (1997) In: Cement chemistry, 2nd edn. Thomas Telford Publishing, London

  17. Sarier N, Onder E (2008) Thermochim Acta 452:149

    Article  Google Scholar 

  18. Liu T, Mao L, Liu F, Jiang W, He Z, Fang P (2011) Wuhan Univ J Nat Sci 16:029

    Article  CAS  Google Scholar 

  19. Bo L, Hong Z, Guangsu H (2007) J Mater Sci 42:199. doi:10.1007/s10853-006-1052-1

    Article  Google Scholar 

  20. Iannace G, Masullo M, Di Maio E, Verdolotti L (2009) RIA 33:49

    Google Scholar 

  21. Beranek LL (1971) Noise and vibration control. McGraw-Hill Book Company, New York

    Google Scholar 

  22. Verdolotti L, Salerno A, Lamanna R, Nunziata A, Netti P, Iannace S (2011) Microporous Mesoporous Mater 151:79

    Article  Google Scholar 

  23. Modesti M, Zanella L, Lorenzetti A, Bertani R, Gleria M (2005) Polym Degrad Stab 87:287

    Article  CAS  Google Scholar 

  24. Kramer RH, Zammarano M, Linteris GT, Gedde UW, Gilman JW (2010) Polym Degrad Stab 95:1115

    Article  Google Scholar 

  25. Lorenzetti A, Modesti M, Besco S, Hrelja D, Donadi S (2011) Polym Degrad Stab 96:1455

    Article  CAS  Google Scholar 

  26. Siengchin S, Karger-Kocsis J, Psarras GC, Thomann R (2008) J Appl Polym Sci 110:1613

    Article  CAS  Google Scholar 

  27. Mahfuz H, Rangari VK, Islam MS, Jeelani S (2004) Compos A 35:453

    Article  Google Scholar 

  28. Petrovic ZS (2008) Polym Rev 48:109

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernesto Di Maio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verdolotti, L., Di Maio, E., Lavorgna, M. et al. Hydration-induced reinforcement of rigid polyurethane–cement foams: mechanical and functional properties. J Mater Sci 47, 6948–6957 (2012). https://doi.org/10.1007/s10853-012-6642-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6642-5

Keywords

Navigation