Skip to main content
Log in

Amorphous structure melt-quenched from defective Ge2Sb2Te5

  • First Principles Computations
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Ge2Sb2Te5 (GST) is a technologically important phase-change material for data storage, where the fast reversible phase transition between crystalline and amorphous states is used for recording information. The encoding is achieved by the large contrast in physical properties between the two states. Ge vacancies (VGe) and Sb antisite atoms (SbTe) are primary point defects in crystalline GST. The effect of VGe and SbTe on the atomic arrangements in amorphous GST is unknown, which, however, has significant effects on the performance of GST. In this work, by means of ab initio molecular dynamics calculations, the atomic arrangements in amorphous ideal and defective GST have been investigated. The results show that the amorphous structure of GST with SbTe (St-GST) or with VGe (V-GST) has the same cubic framework and close chemical ordering to ideal GST, and hence similar fast reversible phase transition behavior is expected in the defective phases. Furthermore, the presence of SbTe or VGe in the crystalline phase will result in much more Ge atoms in a tetrahedral geometry as well as in a fourfold octahedral environment in the amorphous state. Especially in V-GST, around 36 % Ge atoms occupy a fourfold octahedral geometry. As fourfold octahedral Ge atoms can enhance the large contrast in physical properties between the crystalline and amorphous phases, introducing Ge vacancies would be an efficient way to improve the performance of GST phase-change materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Raoux S, Welnic W, Ielmini D (2010) Chem Rev 110:240

    Article  CAS  Google Scholar 

  2. Kolobov AV et al (2004) Nat Mater 3:703

    Article  CAS  Google Scholar 

  3. Baker DA, Paesler MA, Lucovsky G, Agarwal SC, Taylor PC (2006) Phys Rev Lett 96:255501

    Article  CAS  Google Scholar 

  4. Sun ZM, Zhou J, Blomqvist A, Johansson B, Ahuja R (2008) Appl Phys Lett 93:061913

    Article  Google Scholar 

  5. Caravati S, Bernasconi M, Kühne TD, Krack M, Parrinello M (2007) Appl Phys Lett 91:171906

    Article  Google Scholar 

  6. Sun ZM, Zhou J, Blomqvist A, Johansson B, Ahuja R (2009) Phys Rev Lett 102:075504

    Article  Google Scholar 

  7. Sun ZM, Zhou J, Pan YC, Song ZT, Mao H-K, Ahuja R (2011) Proc Natl Acad Sci USA 108:10410

    Article  CAS  Google Scholar 

  8. Sun ZM, Zhou J, Ahuja R (2007) Phys Rev Lett 98:055505

    Article  Google Scholar 

  9. Akola J, Jones RO (2007) Phys Rev B 76:235201

    Article  Google Scholar 

  10. Sun ZM, Zhou J, Shin H-J, Blomqvist A, Ahuja R (2008) Appl Phys Lett 93:241908

    Article  Google Scholar 

  11. Sun ZM, Zhou J, Blomqvist A, Xu LH, Ahuja R (2008) J Phys Condens Matter 20:205102

    Article  Google Scholar 

  12. Hegedüs J, Elliott SR (2008) Nat Mater 7:399

    Article  Google Scholar 

  13. Steimer C, Coulet V, Welnic W, Dieker H, Detemple R, Bichara C, Beuneu B, Gaspard J-P, Wuttig M (2008) Adv Mater 20:4535

    Article  CAS  Google Scholar 

  14. Klein A, Dieker H, Späth B, Fons P, Kolobov A, Steimer C, Wuttig M (2008) Phys Rev Lett 100:016402

    Article  CAS  Google Scholar 

  15. Lyeo H-K et al (2006) Appl Phys Lett 89:151904

    Article  Google Scholar 

  16. Sun ZM, Pan YC, Zhou J, Sa BS, Ahuja R (2011) Phys Rev B 83:113201

    Article  Google Scholar 

  17. Kresse G, Hafner J (1994) Phys Rev B 49:14251

    Article  CAS  Google Scholar 

  18. Kresse G, Jouber D (1999) Phys Rev B 59:1758

    Article  CAS  Google Scholar 

  19. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  20. Njoroge WK, Wöltgens HW, Wuttig M (2002) J Vac Sci Technol A 20:230

    Article  CAS  Google Scholar 

  21. Nosé S (1991) Prog Theor Phys Suppl 103:1

    Article  Google Scholar 

  22. Sun ZM, Zhou J, Blomqvist A, Johansson B, Ahuja R (2010) Phys Rev Lett 102:019602

    Article  Google Scholar 

  23. Micoulaut M, Raty JY, Otjacques C, Bichara C (2010) Phys Rev B 81:174206

    Article  Google Scholar 

  24. Mott NF (1967) Adv Phys 16:49

    Article  CAS  Google Scholar 

  25. Cai B, Drabold DA, Elliott SR (2010) Appl Phys Lett 97:191908

    Article  Google Scholar 

  26. Savin A, Steffen N, Wengert S, Fässler T (1997) Angew Chem Int Ed Engl 36:1808

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (60976005) and the Outstanding Young Scientists Foundation of Fujian Province of China (2010J06018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhimei Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Z. Amorphous structure melt-quenched from defective Ge2Sb2Te5 . J Mater Sci 47, 7635–7641 (2012). https://doi.org/10.1007/s10853-012-6607-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6607-8

Keywords

Navigation