Skip to main content
Log in

Analysis of particle rolling and intrinsic rotations in copper powder during sintering

  • Sintering 2011
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The common theoretical model used to describe the sintering process is the two particle model. This model describes comprehensively the growth of inter-particle contacts driven by the Laplace pressure. In three dimensions this model fails as cooperative material transport (i.e., movements of powder particles) occurs. The fundamental understanding of these processes is still rather sketchy and is derived from the observation of 1D or 2D samples. To observe and quantify cooperative material transport new experimental methods are needed, for example high resolution computer tomography in conjunction with photogrammetric image analysis. Single-crystal copper spheres were marked by drilling holes into the surface of each particle and two samples were prepared using the marked powder. One sample was heated continuously to 1,050 °C in a silica capillary and was analyzed by in situ synchrotron computer tomography (SCT) at the European synchrotron radiation facility in Grenoble. Free sintering was investigated by ex-situ SCT at Bessy II in Berlin. The novel technique of drilling holes into the sphere surfaces allows for the quantification of both intrinsic rotations and particle rolling by photogrammetry. The observed intrinsic rotations exceed the rolling by far and we conclude that the anisotropy of grain boundary energies results in grain boundary sliding. Furthermore, we present first computer simulations of sintering processes based on initial particle positions measured by SCT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. The occurrence of such thin gaps is unlikely and metrological inaccessible. Hence must be accepted. The low probability insures a low statistical significance.

References

  1. German RM (1996) Sintering theory and practice. Wiley, New York

    Google Scholar 

  2. Schatt W, Wieters K-P, Kieback B (2007) Pulvermetallurgie: technologien und werkstoffe. Springer, New York

    Google Scholar 

  3. German RM (2005) Powder metallurgy and particulate materials processing. Metal Powder Industries Federation, Princeton

    Google Scholar 

  4. Exner HE and Kraft T (1998) Review on computer simulations of sintering processes. In: Proceedings of powder metallurgy world congress, Granada (Spain), vol 2. European Powder Metallurgy Association, Shrewsbury, pp 278–283

  5. Exner HE (1979) Rev Powder Met Phys Ceram 1:7

    Google Scholar 

  6. Schatt W (1992) Sintervorgänge. VDI-Verlag, Düsseldorf

    Google Scholar 

  7. Geguzin JE (1973) Physik des Sinterns. VEB Deutscher Verlag für Grundstoffindustrie, Leipzig

    Google Scholar 

  8. German RM (1994) Powder metallurgy science, 2nd edn. Metal Powder Industries Federation, Princeton

    Google Scholar 

  9. Mykura H (1979) Acta Metall 27:243

    Article  CAS  Google Scholar 

  10. Wieters K-P, Boiko IJ, Schatt W (1984) Cryst Res Technol 19:1195

    Article  CAS  Google Scholar 

  11. Pond RC, Smith DA (1977) Scripta Metall 11:77

    Article  CAS  Google Scholar 

  12. Chan SW, Balluffi RW (1986) Acta Metall 34:2191

    Article  CAS  Google Scholar 

  13. Weiser MW, De Jonghe LC (1986) J Am Ceram Soc 69:822

    Article  CAS  Google Scholar 

  14. Exner HE, Müller C (2009) J Am Ceram Soc 92:1384

    Article  CAS  Google Scholar 

  15. Skorokhod VV (1999) Powder Metall Metal Ceram 38:350

    Article  CAS  Google Scholar 

  16. Eloff PC, Lenel FV (1971) The effects of mechanical constraints upon the early stages of sintering. Modern developments in powder metallurgy, vol 4. In: Proceedings of the international powder metallurgy conference. Plenum, New York, pp 291–302

  17. Petzow G, Exner HE (1976) Z Metallkde 67:611

    CAS  Google Scholar 

  18. Sutton AP, Balluffi RW (2003) Interfaces in crystalline materials. Oxford University Press, New York

    Google Scholar 

  19. Petzow G, Exner HE (1976) Z Metallkd 67:611

    CAS  Google Scholar 

  20. Bernard D, Gendron D, Heintz J-M, Bordère S, Etourneau J (2005) Acta Mater 53:121

    Article  CAS  Google Scholar 

  21. Vagnon A et al (2008) Acta Mater 56:1084

    Article  CAS  Google Scholar 

  22. Lame O, Bellet D, Di Michiel M, Bouvard D (2003) Nucl Instrum Methods Phys Res B 200:287

    Article  CAS  Google Scholar 

  23. Lame O, Bellet D, Di Michiel M, Bouvard D (2004) Acta Mater 52:977

    Article  CAS  Google Scholar 

  24. Nöthe M, Schulze M, Grupp R, Kieback B, Haibel A (2007) Mater Sci For 539–543:2657

    Google Scholar 

  25. Grupp R, Nöthe M, Kieback B, Banhart J (2011) Nat Commun 2:298

    Article  CAS  Google Scholar 

  26. Sauerwald F, Holub L (1933) Z Elektrochem Angew Phys Chem 39:750

    CAS  Google Scholar 

  27. Wolf D (1990) J Mater Res 5:1708

    Article  CAS  Google Scholar 

  28. Riedel H, Zipse H, Svoboda J (1994) Acta Metall 42:445

    Article  CAS  Google Scholar 

  29. Verlet L (1967) Phys Rev 159:98

    Article  CAS  Google Scholar 

  30. Henrich B, Wonisch A, Kraft T, Moseler M, Riedel H (2007) Acta Mater 55:753

    Article  CAS  Google Scholar 

  31. Swinkels FB, Ashby MF (1981) Acta Metall 29:259

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Deutsche Forschungsgemeinschaft (DFG) for funding of our research. In addition we would like to thank the Helmholtz Gemeinschaft for funding of the Virtual Institute “Photon and Neutron Research on Advanced Engineering Materials,” H. Riesemeier for the support at the BAMLine and Ecka Granulates for supplying copper powder. We are grateful to the European Synchrotron Radiation Facility for the provision of synchrotron radiation facilities and especially M. Di Michiel for his assistance in using beamline ID15A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Kieback.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kieback, B., Noethe, M., Grupp, R. et al. Analysis of particle rolling and intrinsic rotations in copper powder during sintering. J Mater Sci 47, 7047–7055 (2012). https://doi.org/10.1007/s10853-012-6558-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6558-0

Keywords

Navigation