Skip to main content
Log in

Electrochemical characteristics of nano and microcrystalline Fe–Cr alloys

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The electrochemical behavior of nano and microcrystalline Fe–10Cr and Fe–20Cr alloys was determined using potentiodynamic polarization in 0.5 M H2SO4. Disks of the alloys were prepared by high-energy ball milling followed by compaction and sintering. In the current study, nanocrystalline Fe–Cr alloys reveal significantly different electrochemical characteristics, typified by lower anodic current densities and more negative passivation potentials, compared with their microcrystalline counterparts. In addition to the differences in grain boundary density, compositional characterization of corrosion films carried out by X-ray photoelectron spectroscopy indicates a higher Cr content in the film developed upon nanocrystalline Fe–Cr alloys. Mechanisms for observed enhancement in the corrosion performance of the nanocrystalline Fe–Cr alloys are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gleiter H (1989) Prog Mater Sci 33:223

    Article  CAS  Google Scholar 

  2. Kim SH, Aust KT, Erb U, Gonzalez F, Palumbo G (2003) Scr Mater 48:1379

    Article  CAS  Google Scholar 

  3. Rofagha R, Erb U, Ostrander D, Palumbo G, Aust K (1993) Nanostruct Mater 2:1

    Article  CAS  Google Scholar 

  4. Kirchheim R, Huang XY, Cui P, Birringer R, Gleiter H (1992) Nanostruct Mater 1:167

    Article  CAS  Google Scholar 

  5. Barbucci A, Farne G, Matteazzi P, Riccieri R, Cerisola G (1999) Corros Sci 41:463

    Article  CAS  Google Scholar 

  6. Singh Raman RK, Gupta RK, Koch CC (2010) Philos Mag 90:3233

    Article  Google Scholar 

  7. Singh Raman RK, Gupta RK (2009) Corros Sci 51:316

    Article  Google Scholar 

  8. Rofagh R, Langer R, El-Sherik AM, Erb U, Palumbo G, Aust KT (1991) Scr Metall Mater 25:2867

    Article  Google Scholar 

  9. Ralston KD, Birbilis N (2010) Corrosion 66:1D

    Article  Google Scholar 

  10. Kedim OE, Pari S, Phigini C, Bernard F, Gaffet E, Munir ZA (2004) Mater Sci Eng A 369:49

    Article  Google Scholar 

  11. Tong HY, Shi FG, Lavernia EJ (1995) Scr Metall Mater 32:511

    Article  CAS  Google Scholar 

  12. Lu AQ, Zhang Y, Li Y, Liu G, Zang HQ, Liu CM (2006) Acta Meteall Sin 19:183

    Article  CAS  Google Scholar 

  13. Wang XY, Li DY (2002) Electrochim Acta 47:3939

    Article  CAS  Google Scholar 

  14. Ye W, Li Y, Wang F (2006) Electrochim Acta 51:4426

    Article  CAS  Google Scholar 

  15. Kwok CT, Cheng FT, Ma HC, Ding WH (2006) Mater Lett 60:2419

    Article  CAS  Google Scholar 

  16. Meng G, Li Y, Wang F (2006) Electrochim Acta 51:4277

    Article  CAS  Google Scholar 

  17. Gupta R, Singh Raman RK, Koch CC (2008) Mater Sci Eng A 494:253

    Article  Google Scholar 

  18. Kaesche H (2003) Corrosion of metals: physicochemical principles and current problems erlangen. Springer, Berlin

    Google Scholar 

  19. CasaXPS version 2.3.15. Casa Software Ltd., www.casaxps.com

  20. Gupta RK, Singh Raman RK, Koch CC (2010) J Mater Sci 45:4884

    Article  CAS  Google Scholar 

  21. Wang ZB, Tao NR, Tong WP, Lu J, Lu K (2003) Acta Mater 51:4319

    Article  CAS  Google Scholar 

  22. Kaur I, Gust W, Kozma L (1989) Handbook of grain and interphase boundary diffusion data. Zigler Press, Stuttgart, p 523

    Google Scholar 

  23. Bowen AW, Leak GM (1970) Metall Trans 1:1695

    Article  CAS  Google Scholar 

  24. Sieradzki K, Newman RC (1986) J Electrochem Soc 133:1979

    Article  CAS  Google Scholar 

  25. Qian S, Newman RC, Cottis RA (1990) J Electrochem Soc 137:435

    Article  CAS  Google Scholar 

  26. Gupta RK, Darling KS, Raman Singh RK, Ravi KR, Koch CC, Murty BS, Scattergood RO (2012) J Mater Sci 47:1562. doi:10.1007/s10853-011-5986-6

    Article  CAS  Google Scholar 

  27. Gupta RK, Raman Singh RK, Koch CC (2008) TMS Annu Meet 1:151

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the Australian Research Council (ARC) Discovery grant scheme (DP0665112) for funding this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajeev K. Gupta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, R.K., Singh Raman, R.K. & Koch, C.C. Electrochemical characteristics of nano and microcrystalline Fe–Cr alloys. J Mater Sci 47, 6118–6124 (2012). https://doi.org/10.1007/s10853-012-6529-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6529-5

Keywords

Navigation