Skip to main content

Advertisement

Log in

Hydrogen uptake by graphene and nucleation of graphane

  • First Principles Computations
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Reactions of hydrogen with electronic materials are important for the operation of related devices. Here we use first-principles density-functional theory calculations to describe hydrogen reactions on pristine and defective graphene. We show that small hydrogen clusters on defect-free graphene are unstable against emission of hydrogen molecules and that the associated reaction energies and barriers have a subtle dependence on the type of the clusters. In contrast, chemisorption of hydrogen in the vicinity of graphene vacancies leads to progressively larger clusters of adatoms and, eventually, to formation of graphane. The results are relevant to the optimization of graphene- and graphane-based devices, as well to the creation of graphene–graphane hybrid systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Pantelides ST, Tsetseris L, Rashkeev SN, Zhou XJ, Fleetwood DM, Schrimpf RD (2007) Microelectr Reliab 47:903

    Article  CAS  Google Scholar 

  2. Fleetwood DM, Rodgers MP, Tsetseris L, Zhou XJ, Batyrev I, Wang S, Schrimpf RD, Pantelides ST (2007) Microelectr Reliab 47:1075

    Article  CAS  Google Scholar 

  3. Tsetseris L, Fleetwood DM, Schrimpf RD, Zhou XJ, Batyrev IG, Pantelides ST (2007) Microelectr Eng 84:2344

    Article  CAS  Google Scholar 

  4. Sofo JO, Chaudhari AS, Barber GD (2007) Phys Rev B 75:153401

    Article  Google Scholar 

  5. Boukhvalov DW, Katsnelson MI, Lichtenstein AI (2008) Phys Rev B 77:035427

    Article  Google Scholar 

  6. Elias DC, Nair RR, Mohiuddin TMG et al (2009) Science 323:610

    Article  CAS  Google Scholar 

  7. Balog R, Jorgensen B, Nilsson L et al (2010) Nat Mater 9:315

    Article  CAS  Google Scholar 

  8. Haberer D, Vyalikh DV, Taioli S et al (2010) Nano Lett 10:3360

    Article  CAS  Google Scholar 

  9. Haberer D, Petaccia L, Farjam M et al (2011) Phys Rev B 83:165433

    Article  Google Scholar 

  10. Shytov AV, Abanin DA, Levitov LS (2009) Phys Rev Lett 103:016806

    Article  Google Scholar 

  11. Bostwick A, McChesney JL, Emtsev KV, Seyller T, Horn K, Kevan SD, Rotenberg E (2009) Phys Rev Lett 103:056404

    Article  Google Scholar 

  12. Chen W, Li YF, Yu GT, Li CZ, Zhang SBB, Zhou Z, Chen ZF (2010) J Am Chem Soc 132:1699

    Article  CAS  Google Scholar 

  13. Bang J, Chang KJ (2010) Phys Rev B 81:193412

    Article  Google Scholar 

  14. Wu MH, Wu XJ, Gao Y, Zeng XC (2010) J Phys Chem C 114:139

    Article  CAS  Google Scholar 

  15. Boukhvalov DW, Katsnelson MI (2011) ACS Nano 5:2440

    Article  CAS  Google Scholar 

  16. Grassi R, Low T, Lundstrom M (2011) Nano Lett 11:4574

    Article  CAS  Google Scholar 

  17. Singh AK, Yakobson BI (2009) Nano Lett 9:1540

    Article  CAS  Google Scholar 

  18. Zhou J, Wu MM, Zhou X, Sun Q (2009) Appl Phys Lett 95:103108

    Article  Google Scholar 

  19. Zhou J, Wang Q, Sun Q, Chen XS, Kawazoe Y, Jena P (2009) Nano Lett 9:3867

    Article  CAS  Google Scholar 

  20. Tsetseris L, Pantelides ST (2009) Carbon 47:901

    Article  CAS  Google Scholar 

  21. Tsetseris L, Pantelides ST (2009) J Phys Chem B 113:941

    Article  CAS  Google Scholar 

  22. Tsetseris L, Pantelides ST (2011) Appl Phys Lett 99:143119

    Article  Google Scholar 

  23. Gharenkhanlou B, Khorasani S (2010) IEEE Trans Electron Dev 57:209

    Article  Google Scholar 

  24. Zboril R, Karlisky F, Bourlinos A et al (2010) Small 6:2885

    Article  CAS  Google Scholar 

  25. Nair RR, Ren W, Jalil R et al (2010) Small 6:2877

    Article  CAS  Google Scholar 

  26. Ferro Y, Teillet-Billy D, Rougeau N, Sidis V, Morisset S, Allouche A (2008) Phys Rev B 78:085417

    Article  Google Scholar 

  27. Ivanovskaya VV, Zobelli A, Teillet-Billy D, Rougeau N, Sidis V, Briddon PR (2010) Eur Phys J B 76:481

    Article  CAS  Google Scholar 

  28. Ranjibar A, Bahramy MS, Khazaei M, Mizuseki H, Kawazoe Y (2010) Phys Rev B 82:165446

    Article  Google Scholar 

  29. Casolo S, Lowik OM, Marinazzo R, Tantardini GF (2009) J Chem Phys 130:054704

    Article  Google Scholar 

  30. Xiang HJ, Kan EJ, Wei SH, Gong XG, Whangbo MH (2010) Phys Rev B 82:165425

    Article  Google Scholar 

  31. Denis PA, Iribarne F (2009) J Mol Struct 907:93

    CAS  Google Scholar 

  32. Borodin VA, Vehvilainen TT, Ganchenkova MG, Nieminen RM (2011) Phys Rev B 84:075486

    Article  Google Scholar 

  33. Pei QX, Zhang YW, Shenoy VB (2010) Carbon 48:898

    Article  CAS  Google Scholar 

  34. Leenaerts O, Partoens B, Peeters FM (2009) Phys Rev B 80:245422

    Article  Google Scholar 

  35. Stojkovic D, Zhang P, Lammert PE, Crespi VH (2003) Phys Rev B 68:195406

    Article  Google Scholar 

  36. Chandrachud P, Pujari BS, Haldar S, Sanyal B, Kanhere DG (2010) J Phys Condens Matter 22:465502

    Article  Google Scholar 

  37. Allouche A, Ferro Y (2006) Carbon 44:3320

    Article  CAS  Google Scholar 

  38. Allouche A, Ferro Y (2006) Phys Rev B 74:235426

    Article  Google Scholar 

  39. Sljivancanin Z, Andersen M, Hornekaer L, Hammer B (2011) Phys Rev B 83:205426

    Article  Google Scholar 

  40. Roman T, Dino WA, Nakanishi H, Kasai H (2009) J Phys Condens Matter 21:474219

    Article  CAS  Google Scholar 

  41. Dzhurakhalov AA, Peeters FM (2011) Carbon 49:3258

    Article  CAS  Google Scholar 

  42. Flores MZS, Autreto PAS, Legoas SB, Galvao DS (2009) Nanotechnology 20:465704

    Article  CAS  Google Scholar 

  43. Cadelano E, Palla PL, Giordano S, Colombo L (2010) Phys Rev B 82:235414

    Article  Google Scholar 

  44. Kresse G, Furthmuller J (1996) Phys Rev B 54:11169

    Article  CAS  Google Scholar 

  45. Vanderbilt D (1990) Phys Rev B 41:7892

    Article  Google Scholar 

  46. Perdew JP, Zunger A (1981) Phys Rev B 23:5048

    Article  CAS  Google Scholar 

  47. Mills G, Jonsson H, Schenter GK (1995) Surf Sci 324:305

    Article  CAS  Google Scholar 

  48. Tsetseris L, Wang SW, Pantelides ST (2006) Appl Phys Lett 88:051916

    Article  Google Scholar 

  49. Tsetseris L, Zhou XJ, Fleetwood DM, Schrimpf RD, Pantelides ST (2007) IEEE Trans Dev Mater Reliab 7:502. doi:10.1109/TDMR.2007.910438

    Article  CAS  Google Scholar 

  50. Tsetseris L, Kalfagiannis N, Logothetidis S, Pantelides ST (2007) Phys Rev B 76:224107

    Article  Google Scholar 

  51. Tsetseris L, Logotheridis S, Pantelides ST (2009) Appl Phys Lett 94:161903

    Article  Google Scholar 

  52. Tsetseris L, Hadjisavvas G, Pantelides ST (2007) Phys Rev B 76:045330

    Article  Google Scholar 

  53. Fan WJ, Zhang RQ, Teo BK, Aradi B, Fraeunheim T (2009) Appl Phys Lett 95:013116

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the McMinn Endowment at Vanderbilt University and by Grant No. HDTRA 1-10-10016. The calculations used resources of the HellasGrid and EGEE computing infrastructure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonidas Tsetseris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsetseris, L., Pantelides, S.T. Hydrogen uptake by graphene and nucleation of graphane. J Mater Sci 47, 7571–7579 (2012). https://doi.org/10.1007/s10853-012-6447-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6447-6

Keywords

Navigation