Skip to main content
Log in

Surface characteristics and blood compatibility of PVDF/PMMA membranes

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Poly(vinylidene fluoride) (PVDF)/poly(methyl methacrylate) (PMMA) membranes have important applications as biomaterials. In this study, PVDF/PMMA with varying ratios is blown into membranes, the surface property and blood compatibility of which are thoroughly investigated. Membrane surface characteristics including composition and topography exert considerable influence on the blood compatibility. Introduction of PMMA disturbs PVDF crystallization, however, favors the β phase crystal formation. PVDF content, crystallization ability, and surface enrichment have decisive effects on the membrane surface composition. Meanwhile, with increased PMMA fraction, the membrane surface roughness is also increased, and subsequently results in decreased hemocompatibility. While the membranes with PMMA content lower than 30 wt% show good blood compatibility, those with higher PMMA fraction exhibit obvious platelet adhesion to the surface. Thermal annealing promotes the formation of β phase PVDF and generates much smoother surface, thus endowing the membranes with greatly enhanced blood compatibility. These results show the prospect for optimization of processability, surface property, and blood compatibility of PVDF/PMMA membranes through facile modulation of PMMA content and fabrication process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Klinge U, Klosterhalfen B, Öttinger AP, Junge K, Schumpelick V (2002) Biomaterials 23:3487

    Article  CAS  Google Scholar 

  2. Bayer IS, Tiwari MK, Megaridis CM (2008) Appl Phys Lett 93:173902

    Article  Google Scholar 

  3. Laroche G, Lafrance C-P, Prud’homme RE, Guidoin R (1998) J Biomed Mater Res 39:184

    Article  CAS  Google Scholar 

  4. Guénard V, Valentini RF, Aebischer P (1991) Biomaterials 12:259

    Article  Google Scholar 

  5. Lin DJ, Lin DT, Young TH, Chen TC, Chang HH, Cheng LP (2009) J Biomater Sci 20:1943

    Article  CAS  Google Scholar 

  6. Young TH, Lin UH, Lin DJ, Chang HH, Cheng LP (2009) J Biomater Sci 20:703

    Article  CAS  Google Scholar 

  7. Kang ET, Zhang Y (2000) Adv Mater 12:1481

    Article  CAS  Google Scholar 

  8. Klee D, Ademovic Z, Bosserhoff A, Hoecker H, Maziolis G, Erli H-J (2003) Biomaterials 24:3663

    Article  CAS  Google Scholar 

  9. Liu F, Du C-H, Zhu B-K, Xu Y–Y (2007) Polymer 48:2910

    Article  CAS  Google Scholar 

  10. Clochard MC, Bègue J, Lafon A et al (2004) Polymer 45:8683

    Article  CAS  Google Scholar 

  11. Taylor EP, Landis FA, Page KA, Moore RB (2006) Polymer 47:7425

    Article  CAS  Google Scholar 

  12. Canalda JC, Hoffmann T, Martínez-Salazar J (1995) Polymer 36:981

    Article  CAS  Google Scholar 

  13. Huang C, Zhang L (2004) J Appl Polym Sci 92:1

    Article  CAS  Google Scholar 

  14. Ma W, Zhang J, Wang X, Wang S (2007) Appl Surf Sci 253:8377

    Article  CAS  Google Scholar 

  15. Freire E, Bianchi O, Monteiro EEC, Nunes RCR, Forte MC (2009) Mater Sci Eng 29:657

    Article  CAS  Google Scholar 

  16. Zhao X, Cheng J, Zhang J, Chen S, Wang X (2012) J Mater Sci 47:3720. doi:10.1007/s10853-011-6221-1

    Article  CAS  Google Scholar 

  17. Gu M, Zhang J, Wang X, Ma W (2006) J Appl Polym Sci 102:3714

    Article  CAS  Google Scholar 

  18. Huang S, Yee WA, Tjiu WC et al (2008) Langmuir 24:13621

    Article  CAS  Google Scholar 

  19. Low YKA, Meenubharathi N, Niphadkar ND, Boey FYC, Ng KW (2011) J Biomater Sci 22:1651

    Article  CAS  Google Scholar 

  20. Valentini RF, Vargo TG, Gardella JA, Aebischer P (1992) Biomaterials 13:183

    Article  CAS  Google Scholar 

  21. Bouaziz A, Richert A, Caprani A (1997) Biomaterials 18:107

    Article  CAS  Google Scholar 

  22. Lin J-C, Tiong S-L, Chen C-Y (2000) J Biomater Sci Polym Ed 11:701

    Article  Google Scholar 

  23. Roach P, Farrar D, Perry CC (2006) J Am Chem Soc 128:3939

    Article  CAS  Google Scholar 

  24. Hamilton DW, Brunette DM (2007) Biomaterials 28:1806

    Article  CAS  Google Scholar 

  25. Curtis A, Wilkinson C (1997) Biomaterials 18:1573

    Article  CAS  Google Scholar 

  26. Tsapikouni TS, Missirlis YF (2008) Mater Sci Eng, B 152:2

    Article  CAS  Google Scholar 

  27. Rechendorff K, Hovgaard MB, Foss M, Zhdanov VP, Besenbacher F (2006) Langmuir 22:10885

    Article  CAS  Google Scholar 

  28. Li W, Li H, Zhang Y-M (2009) J Mater Sci 44:2977. doi:10.1007/s10853-009-3395-x

    Article  CAS  Google Scholar 

  29. Salimi A, Yousefi AA (2003) Polym Test 22:699

    Article  CAS  Google Scholar 

  30. Salimi A, Yousefi AA (2004) J Polym Sci B 42:3487

    Article  CAS  Google Scholar 

  31. Zhong G, Zhang L, Su R, Wang K, Fong H, Zhu L (2011) Polymer 52:2228

    Article  CAS  Google Scholar 

  32. Owens DK, Wendt RC (1969) J Appl Polym Sci 13:1741

    Article  CAS  Google Scholar 

  33. Yuan YL, Ai F, Zhang J, Zang XB, Shen J, Lin SC (2002) J Biomater Sci Polym Ed 13:1081

    Article  CAS  Google Scholar 

  34. Yuan Y, Ai F, Zang X, Zhuang W, Shen J, Lin S (2004) Colloid Surf B 35:1

    Article  CAS  Google Scholar 

  35. Liu L, Guo S, Chang J, Ning C, Dong C, Yan D (2008) J Biomed Mater Res B 87B:244

    Article  CAS  Google Scholar 

  36. Tawansi A, Oraby AH, Abdelrazek EM, Abdelaziz M (1999) Polym Test 18:569

    Article  CAS  Google Scholar 

  37. Gregorio R (2006) J Appl Polym Sci 100:3272

    Article  CAS  Google Scholar 

  38. Elashmawi IS, Hakeem NA (2008) Polym Eng Sci 48:895

    Article  CAS  Google Scholar 

  39. Tang W, Zhu T, Zhou P et al (2011) J Mater Sci 46:6656. doi:10.1007/s10853-011-5618-1

    Article  CAS  Google Scholar 

  40. Du C-H, Zhu B-K, Xu Y–Y (2006) J Mater Sci 41:417. doi:10.1007/s10853-005-2182-6

    Article  CAS  Google Scholar 

  41. Kwok SCH, Wang J, Chu PK (2005) Diam Relat Mater 14:78

    Article  CAS  Google Scholar 

  42. Jones MI, McColl IR, Grant DM, Parker KG, Parker TL (2000) J Biomed Mater Res 52:413

    Article  CAS  Google Scholar 

  43. Roach P, Eglin D, Rohde K, Perry CC (2007) J Mater Sci 18:1263. doi:10.1007/s10856-006-0064-3

    Article  CAS  Google Scholar 

  44. Ruckenstein E, Gourisankar SV (1984) J Colloid Interface Sci 101:436

    Article  CAS  Google Scholar 

  45. Chen N, Hong L (2002) Polymer 43:1429

    Article  CAS  Google Scholar 

  46. Schnidt JJ, Gardella JA, Salvati L (1989) Macromolecules 22:4489

    Article  Google Scholar 

  47. Ermi BD, Karim A, Douglas JF (1998) J Polym Sci B 36:191

    Article  CAS  Google Scholar 

  48. Wang YD, Cakmak M (2001) Polymer 42:3731

    Article  CAS  Google Scholar 

  49. Borgs C, De Coninck J, Kotecký R, Zinque M (1995) Phys Rev Lett 74:2292

    Article  CAS  Google Scholar 

  50. Chow TS (1998) J Phys: Condens Matter 10:L445

    Article  CAS  Google Scholar 

  51. Palasantzas G, de Hosson JTM (2001) Acta Mater 49:3533

    Article  CAS  Google Scholar 

  52. Khang D, Kim SY, Liu-Snyder P, Palmore GTR, Durbin SM, Webster TJ (2007) Biomaterials 28:4756

    Article  CAS  Google Scholar 

  53. Gregorio R, Ueno EM (1999) J Mater Sci 34:4489. doi:10.1023/A:1004689205706

    Article  CAS  Google Scholar 

  54. Chen H, Yuan L, Song W, Wu Z, Li D (2008) Prog Polym Sci 33:1059

    Article  CAS  Google Scholar 

  55. Liu TY, Lin WC, Huang LY, Chen SY, Yang MC (2005) Polym Adv Technol 16:413

    Article  Google Scholar 

  56. Zhao T, Li Y, Gao Y, Xiang Y, Chen H, Zhang T (2011) J Mater Sci 22:2311. doi:10.1007/s10856-011-4406-4

    Article  CAS  Google Scholar 

  57. Massa TM, Yang ML, Ho JYC, Brash JL, Santerre JP (2005) Biomaterials 26:7367

    Article  CAS  Google Scholar 

  58. Takami Y, Makinouchi K, Nakazawa T, Glueck J, Benkowski R, Nose Y (1996) Artif Organs 20:1155

    Article  CAS  Google Scholar 

  59. Tanaka M, Motomura T, Kawada M et al (2000) Biomaterials 21:1471

    Article  CAS  Google Scholar 

  60. Tanaka M, Mochizuki A, Ishii N, Motomura T, Hatakeyama T (2001) Biomacromolecules 3:36

    Article  Google Scholar 

  61. Koh LB, Rodriguez I, Venkatraman SS (2010) Biomaterials 31:1533

    Article  CAS  Google Scholar 

  62. Chung T-W, Liu D-Z, Wang S-Y, Wang S–S (2003) Biomaterials 24:4655

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the “12th 5-year” National Key Technologies R&D Program of China (2011BAE08B00), the National Science Foundation of China (21104044), the Ph.D. Programs Foundation of Ministry of Education of China (20110073120040), and the Shanghai Leading Academic Discipline Project (No. B202). W. Z. Yuan thanks the Start-up Foundation for New Faculties of Shanghai Jiao Tong University. The authors thank Dr. Limin Sun from Instrumental Analysis Center of SJTU for the XPS analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wang Zhang Yuan or Yongming Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ai, F., Li, H., Wang, Q. et al. Surface characteristics and blood compatibility of PVDF/PMMA membranes. J Mater Sci 47, 5030–5040 (2012). https://doi.org/10.1007/s10853-012-6379-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6379-1

Keywords

Navigation