Skip to main content
Log in

Effect of thermal coarsening on the thermal conductivity of nanoporous gold

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The thermal conductivities of nanoporous gold (NPG) microwires annealed at different temperatures have been measured in the temperature range from 100 to 320 K. Considering the electron-surface scattering, the thermal conductivity is expected to increase with the increase of ligament diameter. However, the thermal conductivity of NPG microwire is found to decrease after thermal coarsening, and has a maximum value at around 250 K for the as-dealloyed sample. We suggest that the defects accumulating at a relatively high temperature and the reduction in defect spacing may cause these temperature behaviors of thermal conductivity. Taking into account the electron scattering on ligament surfaces and defects, a modified theoretical model for the thermal conductivity of nanoporous metal is proposed to agree with our experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Seker E, Reed ML, Begley MR (2009) Materials 2:2188

    Article  CAS  Google Scholar 

  2. Ding Y, Kim YJ, Erlebacher J (2004) J Adv Mater 16:1897

    Article  CAS  Google Scholar 

  3. Sun Y, Balk TJ (2007) Scr Mater 58:727

    Article  Google Scholar 

  4. Seker E, Gaskins JT, Bart-Smith H, Zhu J, Reed ML, Zangari G, Kelly R, Begley MR (2007) Acta Mater 55:4593

    Article  CAS  Google Scholar 

  5. Lee D, Wei X, Chen X, Zhao M, Jun SC, Hone J, Herbet EG, Oliver WC, Kysar JW (2007) Scr Mater 56:437

    Article  CAS  Google Scholar 

  6. Qian LH, Yan XQ, Fujita T, Inoue A, Chen MW (2007) Appl Phys Lett 90:153120

    Article  Google Scholar 

  7. Li R, Sieradzki K (1992) Phys Rev Lett 68:1168

    Article  CAS  Google Scholar 

  8. Xia R, Xu C, Wu W, Li XD, Feng XQ, Ding Y (2009) J Mater Sci 44:4728. doi:10.1007/s10853-009-3731-1

    Article  CAS  Google Scholar 

  9. Hakamada M, Mabuchi M (2008) Mater Lett 62:483

    Article  CAS  Google Scholar 

  10. Parida S, Kramer D, Volkert CA, Rösner H, Erlebacher J, Weissmüller J (2006) Phys Rev Lett 97:035504

    Article  CAS  Google Scholar 

  11. Hodge AM, Biener J, Hayes JR, Bythrow PM, Volket CA, Hamza AV (2007) Acta Mater 55:1343

    Article  CAS  Google Scholar 

  12. Petegem SV, Brandstetter S, Maass R, Hodge AM, EI-Dasher BS, Biener J, Schmitt B, Borca C, Swygenhoven HV (2009) Nano Lett 9:1158

    Article  Google Scholar 

  13. Ji C, Searson PC (2002) Appl Phys Lett 81:4437

    Article  CAS  Google Scholar 

  14. Chen YK, Chu YS, Yi JM, McNulty I, Shen Q, Voorhees PW, Dunand DC (2010) Appl Phys Lett 96:043122

    Article  Google Scholar 

  15. Li HQ, Misra A (2010) Scr Mater 63:1169

    Article  CAS  Google Scholar 

  16. Sun Y, Kucera KP, Burger SA, Balk TJ (2008) Scr Mater 58:1018

    Article  CAS  Google Scholar 

  17. Hakamada M, Mabuchi M (2009) J Mater Res 24:301

    Article  CAS  Google Scholar 

  18. Xia R, Wang JL, Ding Y, Feng XQ, Li XD, Zhang X (2010) Nanotechology 21:085703

    Article  Google Scholar 

  19. Hopkins PE, Norris PM, Phinney LM, Policastro SA, Kelly RG (2008) J Nanomater 2008:1

    Article  Google Scholar 

  20. Senior NA, Newman RC (2006) Nanotechology 17:2311

    Article  CAS  Google Scholar 

  21. Fujii M, Zhang X, Xie H, Ago H, Takahashi K, Ikuta T, Abe H, Shimizu T (2005) Phys Rev Lett 95:065502

    Article  Google Scholar 

  22. Wang JL, Gu M, Zhang X, Song Y (2009) J Phys D Appl Phys 42:105502

    Article  Google Scholar 

  23. Szelagowski H, Arvanitidis I, Seetharaman S (1999) J Appl Phys 85:193

    Article  CAS  Google Scholar 

  24. Litovsky E, Shapiro M, Shavit A (1996) J Am Ceram Soc 79:1366

    Article  CAS  Google Scholar 

  25. Gesele G, Linsmeier J, Drach V, Fricke J, Arens-Fischer R (1997) J Phys D Appl Phys 30:2911

    Article  CAS  Google Scholar 

  26. Song DW, Shen MN, Dunn B, Moore CD, Goorsky MS, Radetic T, Gronsky R, Chen G (2004) Appl Phys Lett 84:1883

    Article  CAS  Google Scholar 

  27. Cernuschi F, Ahmaniemi S, Vuoristo P, Mantyla T (2004) J Eur Ceram Soc 24:2657

    Article  CAS  Google Scholar 

  28. Lide DR (2004) Handbook of chemistry and physics, 84th edn. CRC Press, Boca Raton

    Google Scholar 

  29. Sumirat I, Ando Y, Shimamura S (2006) J Porous Mater 13:439

    Article  CAS  Google Scholar 

  30. Wang XY, Riffe DM, Lee YS, Downer MC (1994) Phys Rev B 50:8016

    Article  CAS  Google Scholar 

  31. Erlebacher J (2011) Phys Rev Lett 106:225504

    Article  CAS  Google Scholar 

  32. Klein MP, Jacobs BW, Ong MD, Fares SJ, Robinson DB, Stavila V, Wagner GJ, Arslan I (2011) J Am Chem Soc 133:9144

    Article  CAS  Google Scholar 

  33. Rosner H, Parida S, Kramer D, Volkert A, Weissmuller J (2007) Adv Eng Mater 9:535

    Article  Google Scholar 

  34. Kolluri K, Demkowicz M (2011) Acta Mater 59:7645

    Article  CAS  Google Scholar 

  35. Biener J, Hodge AM, Hamza AV (2005) Appl Phys Lett 87:121908

    Article  Google Scholar 

  36. Mayadas AF, Shatzkes M (1970) Phys Rev B 1:1382

    Article  Google Scholar 

  37. Zhang QG, Cao BY, Zhang X, Fujii M, Takahashi K (2006) Phys Rev B 74:134109

    Article  Google Scholar 

  38. Zhang QG, Cao BY, Zhang X, Fujii M (2006) J Phys Condens Matter 18:7937

    Article  CAS  Google Scholar 

  39. Wang L, Han X, Liu P, Yue Y, Zhang Z, Ma E (2010) Phys Rev Lett 105:135501

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Nature Science Foundation of China (Grant Nos 51106029, 11102140, 50925519, 50776017, 50730006), the Ph.D. Programs Foundation of Ministry of Education of China (Grant Nos. 20110141120024, 20110092120006), and Open Research Fund Program of Key Laboratory of Transients in Hydraulic Machinery, Ministry of Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Re Xia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Xia, R., Zhu, J. et al. Effect of thermal coarsening on the thermal conductivity of nanoporous gold. J Mater Sci 47, 5013–5018 (2012). https://doi.org/10.1007/s10853-012-6377-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6377-3

Keywords

Navigation