Skip to main content

Advertisement

Log in

Critical assessment of UO2 classical potentials for thermal conductivity calculations

  • First Principles Computations
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This article reviews the thermal transport properties as predicted by 26 classical interatomic potentials for uranium dioxide, an important nuclear fuel material, determined using a lattice dynamics-based method. The calculations reveal structural instabilities for multiple potentials, as well as the presence of lower energy structures even for potentials in which the fluorite structure is stable. Both rigid atom and shell model potentials are considered, and general trends in their representation of the thermal conductivity are identified. Reviewed classical potentials predict thermal conductivity in the range of ~5–22 W/mK, compared to the experimental value of 8.9 W/mK. The quality of the anharmonicity correction that is based on the correlation between thermal expansion and thermal conductivity is investigated, and it found to generally improve thermal conductivities results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Verrall R, Lucuta P (1996) J Nucl Mater 228(2):251

    Article  CAS  Google Scholar 

  2. Hutchings MT (1987) J Chem Soc Faraday Trans 2(83):1083

    Google Scholar 

  3. Martin D (1988) J Nucl Mater 152(2–3):94

    Article  Google Scholar 

  4. Kang KH, Ryu HJ, Song KC, Yang MS (2002) J Nucl Mater 301(2–3):242

    CAS  Google Scholar 

  5. Pillai C, George A (1993) J Nucl Mater 200(1):78

    Article  CAS  Google Scholar 

  6. Lucuta PG, Matzke H, Verrall RA (1995) J Nucl Mater 223(1):51

    Article  CAS  Google Scholar 

  7. Ronchi C, Sheindlin M, Musella M, Hyland GJ (1999) J Appl Phys 85(2):776

    Article  CAS  Google Scholar 

  8. Dudarev SL, Botton GA, Savrasov SY, Szotek Z, Temmerman WM, Sutton AP (1998) Phys Status Solid (A) 166(1):429

    Article  CAS  Google Scholar 

  9. Kudin KN, Scuseria GE, Martin RL (2002) Phys Rev Lett 89:266402

    Article  Google Scholar 

  10. Sanati M, Albers RC, Lookman T, Saxena A (2011) Phys Rev B 84:014116

    Article  Google Scholar 

  11. Yu J, Devanathan R, Weber WJ (2009) J Phys: Condens Matter 21(43):435401

    Article  Google Scholar 

  12. Catlow CRA (1977) P Roy Soc A-Math Phy 353(1675):533

    Article  CAS  Google Scholar 

  13. van Duin ACT, Dasgupta S, Lorant F, Goddard WA (2001) J Phys Chem A 105(41):9396

    Article  Google Scholar 

  14. Shan T-R, Devine BD, Hawkins JM, Asthagiri A, Phillpot SR, Sinnott SB (2010) Phys Rev B 82(23):235302

    Article  Google Scholar 

  15. Tiwary P, van de Walle A, Grønbech-Jensen N (2009) Phys Rev B 80:174302

    Article  Google Scholar 

  16. Govers K, Lemehov S, Hou M, Verwerft M (2007) J Nucl Mater 366(1–2):161

    Article  CAS  Google Scholar 

  17. Skomurski FN, Ewing RC, Rohl AL, Gale JD, Becker U (2006) Am Mineral 91(11–12):1761

    Article  CAS  Google Scholar 

  18. Goel P, Choudhury N, Chaplot S (2008) J Nucl Mater 377(3):438

    Article  CAS  Google Scholar 

  19. Yakub E, Ronchi C, Staicu D (2010) J Nucl Mater 400(3):189

    Article  CAS  Google Scholar 

  20. Read MS, Jackson RA (2010) J Nucl Mater 406(3):293

    Article  CAS  Google Scholar 

  21. Lindan P, Gillan M (1991) J Phys: Condens Matter 3(22):3929

    Article  CAS  Google Scholar 

  22. Motoyama S, Ichikawa Y, Hiwatari Y, Oe A (1999) Phys Rev B 60:292

    Article  CAS  Google Scholar 

  23. Yamada K, Kurosaki K, Uno M, Yamanaka S (2000) J Alloys Compd 307:1

    Article  CAS  Google Scholar 

  24. Arima T, Yamasaki S, Inagaki Y, Idemitsu K (2005) J Alloys Compd 400(1–2):43

    Article  CAS  Google Scholar 

  25. Watanabe T, Sinnott SB, Tulenko JS, Grimes RW, Schelling PK, Phillpot SR (2008) J Nucl Mater 375(3):388

    Article  CAS  Google Scholar 

  26. Ward A, Broido DA, Stewart DA, Deinzer G (2009) Phys Rev B 80(12):125203

    Article  Google Scholar 

  27. Chernatynskiy A, Phillpot SR (2010) Phys Rev B 82(13):134301

    Article  Google Scholar 

  28. Chernatynskiy A, Turney JE, McGaughey AJH, Amon CH, Phillpot SR (2011) J Am Ceram Soc 94(10):3523

    Article  CAS  Google Scholar 

  29. Maradudin AA, Fein AE (1962) Phys Rev 128:2589

    Article  CAS  Google Scholar 

  30. Turney JE, McGaughey AJH, Amon CH (2009) Phys Rev B 79(22):224305

    Article  Google Scholar 

  31. Krishnan R, Srinivasan R, Devanarayanan S (1979) In: Thermal expansion of crystals. Franklin Book Company, New York

    Google Scholar 

  32. Dick BG, Overhauser AW (1958) Phys Rev 112(1):90

    Article  CAS  Google Scholar 

  33. Oitmaa J (1967) Aust J Phys 20(5):495

    Article  Google Scholar 

  34. Desai TG, Uberuaga BP (2009) Scr Mater 60(10):878

    Article  CAS  Google Scholar 

  35. Fink JK (2000) J Nucl Mater 279(1):1

    Article  CAS  Google Scholar 

  36. Klemens P (1958) In: Solid state physics, vol. 7. Academic Press, New York, p 1

    Book  Google Scholar 

  37. Roufosse M, Klemens PG (1973) Phys Rev B 7:5379

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are happy to thank Mark Read for making his potential available to us prior to publication. We would also like to thank Pratyush Tiwary for discussions of his potential. This study was authored by subcontractors (AC, SRP) of the U.S. Government under DOE Contract No. DE-AC07-05ID14517, under the Energy Frontier Research Center (Office of Science, Office of Basic Energy Science, FWP 1356). Accordingly, the U.S. Government retains and the publisher (by accepting the article for publication) acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for U.S. Government purposes. The study of SBS was funded by DOE Nuclear Energy Fuel Cycle Research and Development (FCRD) Campaign, Nuclear Energy Advanced Modeling and Simulation (NEAMS) Program, FUELS: Integrated Performance and Safety Codes and Models project. Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the US DOE under Contract No. DE-AC52-06NA25396. This research was also supported in part by the National Science Foundation through TeraGrid resources under grant number TG-DMR100051.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon R. Phillpot.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chernatynskiy, A., Flint, C., Sinnott, S.B. et al. Critical assessment of UO2 classical potentials for thermal conductivity calculations. J Mater Sci 47, 7693–7702 (2012). https://doi.org/10.1007/s10853-011-6230-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-6230-0

Keywords

Navigation