Skip to main content
Log in

Effects of pressure and vibration on the thermal decomposition of cubic Ti1-x Al x N, Ti1-x Zr x N, and Zr1-x Al x N coatings: a first-principles study

  • First Principles Computations
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Thermodynamic properties as well as the miscibility gap (binodal) and spinodal decompositions of the cubic Ti1-x Al x N, Ti1-x Zr x N, and Zr1-x Al x N coating alloys have been computed using first-principles calculations. Herein, the cluster expansion method and especially the special quasirandom structure are employed to describe the disordered alloys. The effects of pressure and lattice vibration on the miscibility gaps and spinodal decompositions of the above alloys have been investigated by means of Helmholtz free energy with the vibrational contribution depicted with the Debye-Grüneisen model. It is found that the application of hydrostatic pressure promotes the isostructural decomposition of Ti1-x Al x N, Ti1-x Zr x N, and Zr1-x Al x N alloys, whereas the vibrational contribution decreases the consolute temperature of the phase separation. Our results indicate that the improved age-hardening behavior of cubic Ti1-x Al x N coatings with the addition of Zr arises from the enlarged composition range of binodal and spinodal curves at specified temperatures. Our results are in good agreement with the available experimental data and provide a useful insight into the investigation of age-hardening and characterization of Ti–Al–Zr–N-based coatings for high-temperature applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chen L, Moser M, Du Y, Mayrhofer PH (2009) Thin Solid Films 517:6635

    Article  CAS  Google Scholar 

  2. Lii D-F (1998) J Mater Sci 33:2137. doi:10.1023/A:1004327421261

    Article  CAS  Google Scholar 

  3. Cairney JM, Harris SG, Ma LW, Munroe PR, Doyle ED (2004) J Mater Sci 39:3569. doi:10.1023/B:JMSC.0000030708.70303.80

    Article  CAS  Google Scholar 

  4. Sakharova NA, Fernandes JV, Oliveira MC, Antunes JM (2010) J Mater Sci 45:3812. doi:10.1007/s10853-010-4436-1

    Article  CAS  Google Scholar 

  5. Chen L, Du Y, Mayrhofer PH, Wang SQ, Li J (2008) Surf Coat Technol 202:5158

    Article  CAS  Google Scholar 

  6. Mayrhofer PH, Horling A, Karlsson L, Sjolen J, Larsson T, Mitterer C, Hultman L (2003) Appl Phys Lett 83:2049

    Article  CAS  Google Scholar 

  7. Mayrhofer PH, Music D, Schneider JM (2006) Appl Phys Lett 88:071922

    Article  Google Scholar 

  8. Alling B, Odén M, Hultman L, Abrikosov IA (2009) Appl Phys Lett 95:181906

    Article  Google Scholar 

  9. Alling B, Ruban AV, Karimi A, Peil OE, Simak SI, Hultman L, Abrikosov IA (2007) Phys Rev B 75:045123

    Article  Google Scholar 

  10. Alling B, Ruban AV, Karimi A, Hultman L, Abrikosov IA (2011) Phys Rev B 83:104203

    Article  Google Scholar 

  11. Sanjinés R, Sandu CS, Lamni R, Lévy F (2006) Surf Coat Technol 200:6308

    Article  Google Scholar 

  12. Rogström L, Johnson LJS, Johansson MP, Ahlgren M, Hultman L, Odén M (2010) Scrip Mater 62:739

    Article  Google Scholar 

  13. Hörling A, Hultman L, Odén M, Sjölén J, Karlsson L (2005) Surf Coat Technol 191:384

    Article  Google Scholar 

  14. Sheng SH, Zhang RF, Veprek S (2008) Acta Mater 56:968

    Article  CAS  Google Scholar 

  15. Knotek O, Loffler F, Kramer G (1991) Surf Coat Technol 49:325

    Article  CAS  Google Scholar 

  16. Duwez P, Odell F (1950) J Electrochem Soc 97:299

    Article  CAS  Google Scholar 

  17. Holleck H (1986) J Vac Sci Techno A 4:2661

    Article  CAS  Google Scholar 

  18. Hoerling A, Sjölén J, Willmann H, Larsson T, Odén M, Hultman L (2008) Thin Solid Films 516:6421

    Article  CAS  Google Scholar 

  19. Chen L, Holec D, Du Y, Mayrhofer PH (2011) Thin Solid Films 519:5503

    Article  CAS  Google Scholar 

  20. Liu Z-K (2009) J Phase Equilib Diffus 30:517

    Article  CAS  Google Scholar 

  21. Zunger A, Wei S-H, Ferreira LG, Bernard JE (1990) Phys Rev Lett 65:353

    Article  CAS  Google Scholar 

  22. Jiang C, Wolverton C, Sofo J, Chen LQ, Liu ZK (2004) Phys Rev B 69:214202

    Article  Google Scholar 

  23. Connolly JWD, Williams AR (1983) Phys Rev B 27:5169

    Article  CAS  Google Scholar 

  24. Van de Walle A, Ceder G (2002) J Phase Equilib 23:348

    Article  Google Scholar 

  25. Shang SL, Wang Y, Liu ZK (2010) Phys Rev B 82:014425

    Article  Google Scholar 

  26. Taylor DW (1967) Phys Rev 156:1017

    Article  CAS  Google Scholar 

  27. Shang SL, Wang Y, Kim DE, Zacherl CL, Du Y, Liu ZK (2011) Phys Rev B 83:144204

    Article  Google Scholar 

  28. Ghosh G, Van de Walle A, Asta M (2008) Acta Mater 56:3202

    Article  CAS  Google Scholar 

  29. Gan CK, Feng YP, Srolovitz DJ (2006) Phys Rev B 73:235214

    Article  Google Scholar 

  30. Shang S-L, Wang Y, Kim DE, Liu Z-K (2010) Comput Mater Sci 47:1040

    Article  CAS  Google Scholar 

  31. Moruzzi VL, Janak JF, Schwarz K (1988) Phys Rev B 37:790

    Article  CAS  Google Scholar 

  32. Van de Walle A (2009) CALPHAD 33:266

    Article  Google Scholar 

  33. Wang AJ, Zhou LC, Kong Y, Du Y, Liu Z-K, Shang S-L, Ouyang YF, Wang J, Zhang LJ, Wang JC (2009) CALPHAD 33:769

    Article  CAS  Google Scholar 

  34. Wolverton C (2001) Acta Mater 49:3129

    Article  CAS  Google Scholar 

  35. Shang S, Böttger AJ (2005) Acta Mater 53:255

    Article  CAS  Google Scholar 

  36. Blöchl PE (1994) Phys Rev B 50:17953

    Article  Google Scholar 

  37. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  38. Kresse G, Furthmüeller J (1996) Phys Rev B 54:11169

    Article  CAS  Google Scholar 

  39. Methfessel M, Paxton AT (1989) Phys Rev B 40:3616

    Article  CAS  Google Scholar 

  40. Blöchl PE, Jepsen O, Andersen OK (1994) Phys Rev B 49:16223

    Article  Google Scholar 

  41. Herper HC, Hoffmann E, Entel P (1999) Phys Rev B 60:3839

    Article  CAS  Google Scholar 

  42. Kutolin SA, Belova LF, Samoilova RN, Kotenko OM (1976) Izv Akad Nauk SSSR Neorg Mater 12:1585

    CAS  Google Scholar 

  43. Redlich O, Kister AT (1948) Ind Eng Chem 40:341

    Article  CAS  Google Scholar 

  44. Lu X-G, Selleby M, Sundman B (2007) Acta Mater 55:1215

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the National Natural Science Foundation of China (NSFC) for Youth of China with Grant No. 51001120 and the postdoctoral foundation of China with Grant No. 20100470060 and 201104485. The financial supports from the Creative Research Group of the NSFC with Grant No. 51021063, the NSFC with Grant Nos. 50801069, and the Key Program of the NSFC with Grant No. 50831007 are also acknowledged. ZKL and SLS acknowledge the supports from the United States National Science Foundation under the grant No. DMR-1006557.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Du.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 167 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, A., Shang, SL., Du, Y. et al. Effects of pressure and vibration on the thermal decomposition of cubic Ti1-x Al x N, Ti1-x Zr x N, and Zr1-x Al x N coatings: a first-principles study. J Mater Sci 47, 7621–7627 (2012). https://doi.org/10.1007/s10853-011-6223-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-6223-z

Keywords

Navigation