Skip to main content
Log in

An efficient visible light photocatalyst prepared from TiO2 and polyvinyl chloride

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

An efficient visible light photocatalyst has been prepared from TiO2 nanoparticles and a partly conjugated polymer derived from polyvinyl chloride (PVC). It was characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), UV–visible diffuse reflectance spectroscopy (UV–Vis DRS), Fourier-transform infrared spectroscopy (FT-IR), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). The visible light photocatalytic activity of the as-prepared photocatalyst was evaluated by the photocatalytic degradation of Rhodamine B (RhB) under visible light irradiation. The XPS, FT-IR, and Raman spectra show that the partly conjugated polymer derived from PVC exists on the surface of the TiO2 nanoparticles. The UV–Vis DRS, XRD, and TEM results reveal that the modification of the partly conjugated polymer can obviously improve the absorbance of the TiO2 nanoparticles in the range of visible light and hardly affect their size and crystallinity. The visible light photocatalytic activity of the as-prepared TiO2 nanocomposites is higher than that of commercial TiO2 (Degussa P25) and comparable with those of visible light photocatalysts reported in the literature. Their visible light photocatalytic stability is also good. The reasons for their excellent visible light photocatalytic activity and the major factors affecting their photocatalytic activity are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Fujishima A, Honda K (1972) Nature 37:238

    Google Scholar 

  2. Yang H, Zhang K, Shi R, Li X, Dong X, Yu Y (2006) J Alloys Compd 413:302

    Article  CAS  Google Scholar 

  3. Geng H, Peng R, Han S, Gu X, Wang M (2010) J Electron Mater 39:2346

    Article  CAS  Google Scholar 

  4. Macwan DP, Dave PN, Chaturvedi S (2011) J Mater Sci 46:3669. doi:10.1007/s10853-011-5378-y

    Article  CAS  Google Scholar 

  5. Estrellan CR, Salim C, Hinode H (2010) J Hazard Mater 179:79

    Article  CAS  Google Scholar 

  6. Liu S, Chen Y (2009) Catal Commun 10:894

    Article  CAS  Google Scholar 

  7. Tian H, Ma J, Li K, Li J (2009) Ceram Int 35:1289

    Article  CAS  Google Scholar 

  8. Liu G, Wang X, Chen Z, Cheng H, Lu GQ (2009) J Colloid Interface Sci 329:331

    Article  CAS  Google Scholar 

  9. Anandan S, Kathiravan K, Murugesan V, Ikuma Y (2009) Catal Commun 10:1014

    Article  CAS  Google Scholar 

  10. Štengl V, Bakardjieva S, Bludská J (2011) J Mater Sci 46:3523. doi:10.1007/s10853-011-5262-9

    Article  Google Scholar 

  11. Hidalgo MC, Maicu M, Navío JA, Colón G (2009) J Phys Chem C 113:12840

    Article  CAS  Google Scholar 

  12. Wang H, Wu Z, Liu Y, Wang Y (2008) Chemosphere 74:773

    Article  Google Scholar 

  13. Zhang YJ, Yan W, Wu YP, Wang ZH (2008) Mater Lett 23:3846

    Article  Google Scholar 

  14. Franco A, Neves MC, Ribeiro Carrott MML, Mendonca MH, Pereira MI, Monteiro OC (2009) J Hazard Mater 161:545

    Article  CAS  Google Scholar 

  15. Chatterjee D, Mahata A (2001) Appl Catal B 33:119

    Article  CAS  Google Scholar 

  16. Li Y, Zhang H, Hu X, Zhao X, Han M (2008) J Phys Chem C 112:14973

    Article  CAS  Google Scholar 

  17. Zang Y, Farnood R (2008) Appl Catal B 79:334

    Article  CAS  Google Scholar 

  18. Mohamed AS, Ahmed FA, Ahmed BZ (2009) Appl Catal B 91:59

    Article  Google Scholar 

  19. Wang D, Zhang J, Luo Q, Li X, Duan Y, An J (2009) J Hazard Mater 169:546

    Article  CAS  Google Scholar 

  20. Zhang H, Zong R, Zhao J, Zhu Y (2008) Environ Sci Technol 42:803

    Google Scholar 

  21. Li X, Wang D, Cheng G, Luo Q, An J, Wang Y (2008) Appl Catal B 81:267

    Article  CAS  Google Scholar 

  22. Nguyen TBL, Lee K-H, Lee B-T (2011) J Mater Sci 46:5615–5620. doi:10.1007/s10853-011-5511-y

    Article  CAS  Google Scholar 

  23. Luo Q, Li X, Wang D, Wang Y, An J (2011) J Mater Sci 46:1646. doi:10.1007/s10853-010-4981-7

    Article  CAS  Google Scholar 

  24. Owen ED, Shah M, Everall NJ, Twigg MV (1994) Macromolecules 27:3436

    Article  CAS  Google Scholar 

  25. Rogestedt M, Hjertberg T (1993) Macromolecules 26:60

    Article  CAS  Google Scholar 

  26. Michell EWJ (1985) J Mater Sci 20:3816. doi:10.1007/BF00552370

    Article  CAS  Google Scholar 

  27. Starnes WH, Ge X (2004) Macromolecules 37:352

    Article  CAS  Google Scholar 

  28. Cho S, Choi W (2001) J Photochem Photobiol A 143:221

    Article  CAS  Google Scholar 

  29. Yang C, Gong C, Peng T, Deng K, Zan L (2010) J Hazard Mater 178:152

    Article  CAS  Google Scholar 

  30. Kim SH, Ahn SY, Kwak SY (2008) Appl Catal B 79:296

    Article  CAS  Google Scholar 

  31. Yoo H, Kwak SY (2011) Appl Catal B 104:193

    Article  CAS  Google Scholar 

  32. Wang D, Wang Y, Li X, Luo Q, An J, Yue J (2008) Catal Commun 9:1162

    Article  CAS  Google Scholar 

  33. Tong T, Zhang J, Tian B, Chen F, He D (2008) J Hazard Mater 155:572

    Article  CAS  Google Scholar 

  34. Ananpattarachai J, Kajitvichyanukul P, Seraphin S (2009) J Hazard Mater 168:253

    Article  CAS  Google Scholar 

  35. Puma G Li, Brucato A (2007) Catal Today 122:78

    Article  Google Scholar 

  36. Park Y, Kim W, Park H, Tachikawa T, Majima T, Choi W (2009) Appl Catal B 91:355

    Article  CAS  Google Scholar 

  37. Ellahi S, Hester RE, Williams KPJ (1995) Spectrochim Acta 51:5149

    Google Scholar 

  38. Gerrard DL, Maddams WF (1975) Macromolecules 8:54

    Article  CAS  Google Scholar 

  39. Xu T, Cai Y, O’Shea KE (2007) Environ Sci Technol 41:5471

    Article  CAS  Google Scholar 

  40. Serpone N, Texier I, Emeline AV, Pichat P, Hidaka H, Zhao J (2000) J Photochem Photobiol A 136:145

    Article  CAS  Google Scholar 

  41. Dimitriev OP (2004) Macromolecules 37:3388

    Article  CAS  Google Scholar 

  42. Patil AO, Heeger AJ, Wudl F (1988) Chem Rev 88:183

    Article  CAS  Google Scholar 

  43. Salzner U, Lagowski JB, Pickup PG, Poirier RA (1998) Synthetic Met 96:177

    Article  CAS  Google Scholar 

  44. Snook JH, Samuelson LA, Kumar J, Kim YG, Whitten JE (2005) Org Electron 6:55

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by The National Natural Science Foundation of China (No.51002044) and Natural Science Foundation of Hebei Province (No. B2010000846 and B2011208006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Desong Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, D., Shi, L., Luo, Q. et al. An efficient visible light photocatalyst prepared from TiO2 and polyvinyl chloride. J Mater Sci 47, 2136–2145 (2012). https://doi.org/10.1007/s10853-011-6014-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-6014-6

Keywords

Navigation