Skip to main content
Log in

Nanoparticles of IrO2 or Sb–SnO2 increase the performance of iridium oxide DSA electrodes

  • Materials in New Zealand
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Dimensionally stable anodes (DSAs) are widely used in electrochemical industries as gas evolution electrodes. In order to decrease the power consumption during gas evolution, the performance of the electrodes must be increased. In this study, IrO2- or Sb-doped SnO2 (ATO) nanoparticles were added to IrO2 DSAs at a level of 5–40%. The anode surfaces were characterised with scanning electron microscopy (SEM) and X-ray diffraction (XRD). The performance of the anodes for the oxygen evolution reaction was measured in 0.5 mol L−1 H2SO4 solution potentiostatically. The performance increased for both the IrO2 and the ATO nanoparticles’ addition. The maximum performance with IrO2 nanoparticles occurs when the electrode contains 40 wt% nanoparticles, with more than double the current density at 1.25 V, and for ATO, the maximum occurs at 10% nanoparticles with a 70% increase in current density. These both correspond to the maxima in electrochemically active surface area as determined by cyclic voltammetry. The improvement in performance appears therefore to be primarily caused by the increase in surface area. Addition of catalytically active nanoparticles is shown to be an effective method to increase DSA electrode performance towards the oxygen evolution reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Trasatti S (1984) Electrochim Acta 29:1503

    Article  CAS  Google Scholar 

  2. Da Silva L, Alves V, Da Silva M, Trasatti S, Boodts J (1997) Electrochim Acta 42:271

    Article  Google Scholar 

  3. De Pauli C, Trasatti S (1995) J Electroanal Chem 396:161

    Article  Google Scholar 

  4. Otogawa R, Morimitsu M, Matsunaga M (1998) Electrochim Acta 44:1509

    Article  CAS  Google Scholar 

  5. Shrivastava P, Moats M (2009) J Appl Electrochem 39:107

    Article  CAS  Google Scholar 

  6. Ardizzone S, Carugati A, Trasatti S (1981) J Electroanal Chem 126:287

    Article  CAS  Google Scholar 

  7. Coteiro RD, Teruel FS, Ribeiro J, de Andrade AR (2006) J Brazil Chem Soc 17:771

    Article  CAS  Google Scholar 

  8. Camara O, Trasatti S (1996) Electrochim Acta 41:419

    Article  CAS  Google Scholar 

  9. Guerrini E, Trasatti S (2006) Russ J Electrochem 42:1017

    Article  CAS  Google Scholar 

  10. Ribeiro J, Alves P, de Andrade A (2007) J Mater Sci 42:9293. doi:10.1007/s10853-007-1906-1

    Article  CAS  Google Scholar 

  11. Takasu Y, Murakami Y (2000) Electrochim Acta 45:4135

    Article  CAS  Google Scholar 

  12. Iwakura C, Furukawa N, Tanaka M (1992) Electrochim Acta 37:757

    Article  CAS  Google Scholar 

  13. Vázquez-Gómez L, Cattarin S, Guerriero P, Musiani M (2009) J Electroanal Chem 634:42

    Article  Google Scholar 

  14. Amadelli R, Samiolo L, Velichenko AB, Knysh VA, Luk’yanenko TV, Danilov FI (2009) Electrochim Acta 54:5239

    Article  CAS  Google Scholar 

  15. Musiani M, Furlanetto F, Bertoncello R (1999) J Electroanal Chem 465:160

    Article  CAS  Google Scholar 

  16. Xu H-B, Lu Y-H, Li C-H, Hu J-Z (2010) J Appl Electrochem 40:719

    Article  CAS  Google Scholar 

  17. Belova I, Varlamova T, Galyamov B, Roginskaya Y, Shifrina R, Pruchenko S, Kaplan G, Sevostyanov M (1988) Mater Chem Phys 20:39

    Article  CAS  Google Scholar 

  18. Cao MH, Hu CW, Peng G, Qi YJ, Wang EB (2003) J Am Chem Soc 125:4982

    Article  CAS  Google Scholar 

  19. Marshall AT, Haverkamp RG (2010) Electrochim Acta 55:1978

    Article  CAS  Google Scholar 

  20. Haverkamp RG, Marshall AT, Cowie BCC (2011) Surf Interface Anal 43:847. doi:10.1002/sia.3644

  21. Lodi G, Battisiti AD, Bendetti A, Fagherazzi G, Kristof J (1988) J Electroanal Chem 256:441

    Article  CAS  Google Scholar 

  22. Benedetti A, Polizzi S, Riello P, Debattisti A, Maldotti A (1991) J Mater Chem 1:511

    Article  Google Scholar 

  23. Kawar RK, Chigare PS, Patil PS (2003) Appl Surf Sci 206:90

    Article  CAS  Google Scholar 

  24. Lodi G, Battisti AD, Bordin G, Asmundis CD, Benedetti A (1990) J Electroanal Chem 277:139

    Article  CAS  Google Scholar 

  25. Kristof J, Mihaly J, Daolio S, De Battisti A, Nanni L, Piccirillo C (1997) J Electroanal Chem 434:99

    Article  CAS  Google Scholar 

  26. Roginskaya Y, Morozova O (1995) Electrochim Acta 40:817

    Article  CAS  Google Scholar 

  27. Angelinetta C, Atanasoska L, Atanasoski R, Trasatti S (1986) J Electroanal Chem 214:535

    Article  CAS  Google Scholar 

  28. Burke L, Whelan D (1984) J Electroanal Chem 162:121

    Article  CAS  Google Scholar 

  29. Birss VI, Bock C, Elzanowska H (1997) Can J Chem 75:1687

    Article  CAS  Google Scholar 

  30. Petit M, Plichon V (1998) J Electroanal Chem 444:247

    Article  CAS  Google Scholar 

  31. El Sawy EN, Birss VI (2009) J Mater Chem 19:8244

    Article  CAS  Google Scholar 

  32. Aurian-Biajeni B, Kimball A, Robblee L, Kahanda G, Tomkiewicz C (1987) J Electrochem Soc 134:2637

    Article  Google Scholar 

  33. Savinell R, Zeller R, Adams J (1990) J Electrochem Soc 137:489

    Article  CAS  Google Scholar 

  34. Da Silva LM, De Faria LA, Boodts JFC (2001) Electrochim Acta 47:395

    Article  Google Scholar 

  35. Ardizzone S, Fregonara G, Trasatti S (1990) Electrochim Acta 35:263

    Article  CAS  Google Scholar 

  36. Lassali TAF, Boodts JFC, Bulhoes LOS (1999) Electrochim Acta 44:4203

    Article  CAS  Google Scholar 

  37. Ouattara L, Fierro S, Frey O, Koudelka M, Comninellis C (2009) J Appl Electrochem 39:1361

    Article  CAS  Google Scholar 

  38. de Oliveira-Sousa A, de Siliva M, Machado S, Avaca L, de Lima-Neto P (2000) Electrochim Acta 45:4467

    Article  Google Scholar 

  39. Mattos-Costa F, de Lima-Neto P, Machado S, Avaca L (1998) Electrochim Acta 44:1515

    Article  CAS  Google Scholar 

  40. Lyons MEG, Floquet S (2011) Phys Chem Chem Phys 13:5314

    Article  CAS  Google Scholar 

  41. Ardizzone S, Trasatti S (1996) Adv Colloid Interface Sci 64:173

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support from the Foundation of Research, Science and Technology (MAUX0602) ,and Doug Hopcroft, Manawatu Microscopy Centre, for assistance with the electron microscopy work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron T. Marshall.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marshall, A.T., Haverkamp, R.G. Nanoparticles of IrO2 or Sb–SnO2 increase the performance of iridium oxide DSA electrodes. J Mater Sci 47, 1135–1141 (2012). https://doi.org/10.1007/s10853-011-5958-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5958-x

Keywords

Navigation