Skip to main content

Advertisement

Log in

Influence of hierarchical hybrid micro/nano-structured surface on biological performance of titanium coating

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this article, hierarchical hybrid micro/nano-structured titanium surface was obtained by alkali treating the vacuum plasma sprayed titanium coating following hot water immersing for 24 h. The influences of the surface microstructure on the in vitro and in vivo biologic performance of titanium coating were studied. Human bone marrow-derived stromal cells (hBMSCs) were used for in vitro cytocompatibility evaluation. Compared with the rough titanium coating surface, cell behaviors, such as spread and proliferation were apparently enhanced by mimicking the hierarchical hybrid structure of bone tissue, while ALP expression was lower at days 4 and 7. With the expanding of induction time, the ALP activity rapidly increased on the hierarchical surface. After 10 days induction, it became much higher than that on the rough titanium surface. A canine model was applied for an in vivo evaluation of the bone bonding ability. Histologic examination demonstrated that new bone was formed more rapidly on the hierarchical surface implants than that on the rough titanium surface. All these results indicate that the hierarchical surface is favorable for the response of hBMSCs and early bone bonding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Rho JY, Kuhn-Spearing L, Zioupos P (1998) Med Eng Phys 20:92

    Article  CAS  Google Scholar 

  2. Pilliar RM (1998) Implant Dent 7:305

    Article  CAS  Google Scholar 

  3. Pilliar RM (1987) J Biomed Mater Res 21:1

    Article  CAS  Google Scholar 

  4. Kriparamanan R, Aswath P, Zhou A, Tang L, Nguyen KT (2006) J Nanosci Nanotechnol 6:1905

    Article  CAS  Google Scholar 

  5. Vaahtio M, Peltola T, Hentunen T, Ylèanen H, Areva S, Wolke J, Salonen JI (2006) J Mater Sci Mater Med 17:1113

    Article  CAS  Google Scholar 

  6. Areva S, Paldan H, Peltola T, Nèarhi T, Jokinen M, Lindâen M (2004) J Biomed Mater Res A 70:169

    Article  Google Scholar 

  7. Lim JY, Hansen JC, Siedlecki CA, Runt J, Donahue HJ (2005) J R Soc Interface 2:97

    Article  CAS  Google Scholar 

  8. Dalby MJ, McCloy D, Robertson M, Wilkinson CD, Oreffo RO (2006) Biomaterials 27:1306

    Article  CAS  Google Scholar 

  9. Curtis A, Wilkinson CW (1997) Biomaterials 18:1573

    Article  CAS  Google Scholar 

  10. de Oliveira PT, Zalzal SF, Beloti MM, Rosa AL, Nanci A (2007) J Biomed Mater Res A 80:554

    Google Scholar 

  11. Ward BC, Webster TJ (2006) Biomaterials 27:3064

    Article  CAS  Google Scholar 

  12. Zhao LZ, Mei SL, Chu PK, Zhang YM, Wu ZF (2010) Biomaterials 31:5072

    Article  CAS  Google Scholar 

  13. Tan J, Saltzman WM (2004) Biomaterials 25:3593

    Article  CAS  Google Scholar 

  14. Kubo K, Tsukimura N, Iwasa F, Ueno T, Saruwatari L, Aita H (2009) Biomaterials 30:5319

    Article  CAS  Google Scholar 

  15. Fujibayashi S, Nakamura T, Nishiguchi S, Tamura J, Uchida M, Kim HM, Kokubo T (2001) J Biomed Mater Res A 56:562

    Article  CAS  Google Scholar 

  16. Maniatopoulos C, Pilliar RM, Smith DC (1986) J Biomed Mater Res 20:1309

    Article  CAS  Google Scholar 

  17. Pilliar RM, Deporter DA, Watson P (1995) In: Vincenzini P (ed) Material in clinical applications. Techna, Faenza

  18. Pilliar RM (1987) J Biomed Mater Res A 21:1

    Article  CAS  Google Scholar 

  19. Ranucci CS, Moghe PV (2001) J Biomed Mater Res A 54:149

    Article  CAS  Google Scholar 

  20. Martin JY, Schwartz Z, Hummert TW, Schraub DM, Simpson J, Lankford J, Dean DD, Cochran DL, Boyan BD (1995) J Biomed Mater Res 29:389

    Article  CAS  Google Scholar 

  21. Hatano K, Inoue H, Kojo T, Matsunaga T, Tsujisawa T, Uchiyama C, Uchida Y (1999) Bone 25:439

    Article  CAS  Google Scholar 

  22. Boyan BD, Hummert TW, Dean DD, Schwartz Z (1996) Biomaterials 17:137

    Article  CAS  Google Scholar 

  23. Ball M, Grant DM, Lo WJ, Scotchford CA (2008) J Biomed Mater Res A 86:637

    Google Scholar 

  24. Porter AE (2006) Micron 37:681

    Article  CAS  Google Scholar 

  25. Schiller PC, D’Ippolito G, Balkan W, Roos BA, Howard GA (2001) Bone 28:38

    Article  CAS  Google Scholar 

  26. Gramsch B, Gabriel HD, Wiemann M, Grummer R, Winterhager E, Bingmann D et al (2001) Exp Cell Res 264:397

    Article  CAS  Google Scholar 

  27. Marie PJ (2002) J Cell Physiol 190:297

    Article  CAS  Google Scholar 

  28. Civitelli R (2008) Arch Biochem Biophys 473:188

    Article  CAS  Google Scholar 

  29. Chehroudi B, McDonnell D, Brunette DM (1997) J Biomed Mater Res 34:279

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Grant No. 81071455), Fund for Key Science and Technology Program of Shanghai Science and Technology Committee (Grant No. 09441900106).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Youtao Xie or Xuebin Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, Y., Zheng, X., Huang, L. et al. Influence of hierarchical hybrid micro/nano-structured surface on biological performance of titanium coating. J Mater Sci 47, 1411–1417 (2012). https://doi.org/10.1007/s10853-011-5921-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5921-x

Keywords

Navigation