Skip to main content
Log in

Effects of the molecular format of collagen on characteristics of electrospun fibres

  • Materials in New Zealand
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Electrospinning is a process that is used to create nanofibres, which have the potential to be used in many medical and industrial applications. The molecular structure of the raw material is an important factor in determining the structure and quality of the electrospun fibres. In this study, we extracted collagen from a cold water fish species, hoki (Macruronus novaezelandiae), and prepared it in several different molecular formats (native triple helical collagen, denatured whole chains, denatured atelocollagen chains and gelatin) for electrospinning. Low molecular weight gelatin and atelocollagen did not form fibres. Treatment with 1,1,1,3,3,3 hexafluoro-2-propanol or 40% acetic acid denatured collagen molecules into intact α-chains prior to the electrospinning process. When using intact denatured collagen chains, 10% acetic acid was an effective aqueous-based solvent for producing uniform fibres. This information will be useful for the development of a non-toxic, aqueous solvent system suitable for industrial scale-up of the electrospinning process. Our results show that this low imino marine collagen is a suitable biopolymer for producing electrospun fibres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Morton WJ (1902) US Patent 705691

  2. Ramakrishna S, Fujihara K, Teo WE, Lim CT, Ma Z (2006) Electrospinning and nanofibres. World Scientific Publishing Co Pte Ltd, Singapore

    Google Scholar 

  3. Yoshihiro YJ (2008) J Textil Eng 54:199

    Article  Google Scholar 

  4. Filatov Y, Budyka A, Kirichenko V (2007) Electrospinning of micro- and nanofibres: fundamentals and applications in separation and filtration processes. Begell House Inc, New York

    Google Scholar 

  5. Poole AJ, Church JS, Huson MG (2009) Biomacromolecules 10:1

    Article  CAS  Google Scholar 

  6. Matthews JA, Wnek GE, Simpson DG, Bowlin GL (2002) Biomacromolecules 3:232

    Article  CAS  Google Scholar 

  7. Yang L, Fitie CFC, van der Werf KO, Bennink ML, Dijkstra PJ, Feijen J (2008) Biomaterials 29:955

    Article  CAS  Google Scholar 

  8. Zeugolis DI, Khew ST, Yew ESY, Ekaputra AK, Tong YW, Yung L-YL, Hutmacher DW, Sheppard C, Raghunath M (2008) Biomaterials 29:2293

    Article  CAS  Google Scholar 

  9. Matthews JA, Boland ED, Wnek GE, Simpson DG, Bowlin GL (2003) J Bioact Compat Polym 18:125

    Article  CAS  Google Scholar 

  10. Shields KJ, Beckman MJ, Bowlin GL, Wayne JS (2004) Tissue Eng 10:1510

    CAS  Google Scholar 

  11. Barnes CP, Pemble CW, Brand DD, Simpson DG, Bowlin GL (2007) Tissue Eng 13:1593

    Article  CAS  Google Scholar 

  12. Zhong SP, Teo WE, Zhu X, Beuerman RW, Ramakrishna S, Yung L-YLJ (2006) J Biomed Mater Res A 79A:456

    Article  CAS  Google Scholar 

  13. Zhong SP, Teo WE, Zhu X, Beuerman R, Ramakrishna S, Yung L-YL (2007) Mat Sci Eng C 27:262

    Article  CAS  Google Scholar 

  14. Buttafoco L, Kolkman NG, Engbers-Buijtenhuijs P, Poot AA, Dijkstra PJ, Vermes I, Feijen J (2006) Biomaterials 27:724

    Article  CAS  Google Scholar 

  15. Yeo I-S, Oh J-E, Jeong L, Lee TS, Lee SJ, Park WH, Min B-M (2008) Biomacromolecules 9:1106

    Article  CAS  Google Scholar 

  16. Dong B, Arnoult O, Smith ME, Wnek GE (2009) Macromol Rapid Commun 30:539

    Article  CAS  Google Scholar 

  17. Huang L, Nagapudi K, Apkarian R, Chaikof E (2001) J Biomater Sci Polym Ed 12:979

    Article  CAS  Google Scholar 

  18. Stephens JS (2004) Ph.D. Thesis. University of Delaware, Newark

  19. Songchotikunpan P, Tattiyakul J, Supaphol P (2008) Int J Biol Macromol 42:247

    Article  CAS  Google Scholar 

  20. Bailey AJ, Robins SP, Balian G (1974) Nature 251:105

    Article  CAS  Google Scholar 

  21. Robins S, Shimokomaki M, Bailey AJ (1973) Biochem J 131:771

    CAS  Google Scholar 

  22. Eyre DR (1985) In: Pearson AM, Dutson TR, Bailey AJ (eds) Advances in meat research. Van Nostrand Reinhold Company, New York

    Google Scholar 

  23. Woessner JF (1961) Arch Biochem Biophys 93:440

    Article  CAS  Google Scholar 

  24. Hubbard MJ (1995) Eur J Biochem 230:68–79

    Article  CAS  Google Scholar 

  25. Furthmayr H, Timpl R (1971) Anal Biochem 41:510

    Article  CAS  Google Scholar 

  26. Piez KA, Gross JJ (1960) Biol Chem 235:995–997

    CAS  Google Scholar 

  27. Chung E, Miller EJ (1974) Science 183:1200

    Article  CAS  Google Scholar 

  28. Trelstad RL, Catanese VM, Rubin DF (1976) Anal Biochem 71:115

    Article  Google Scholar 

  29. Veis A, Payne K (1988) In: Nimni M (ed) Collagen. CRC Press, Florida

    Google Scholar 

  30. Huang Z-M, Zhang Y-Z, Kotaki M, Ramakrishna S (2003) Compos Sci Technol 63:2223

    Article  CAS  Google Scholar 

  31. Venugopal J, Low S, Choon AT, Ramakrishna S (2008) J Biomed Mater Res B Appl Biomater 84B:34

    Article  CAS  Google Scholar 

  32. Khoshnoodi J, Cartailler J-P, Alvares K, Veis A, Hudson BG (2006) Mol J Biol Chem 281:38117

    CAS  Google Scholar 

  33. Bella J, Brodsky B, Berman HM (1995) Structure 3:893

    Article  CAS  Google Scholar 

  34. Brodsky B, Ramshaw JA (1997) Matrix Biol 15:545

    Article  CAS  Google Scholar 

  35. Bella J, Eaton M, Brodsky B, Berman HM (1994) Science 266:75

    Article  CAS  Google Scholar 

  36. Shoulders MD, Raines RT (2009) Annu Rev Biochem 78:929

    Article  CAS  Google Scholar 

  37. Miles CA (1993) Int J Biol Macromol 15:265

    Article  CAS  Google Scholar 

  38. Miles CA, Burjanadze TV, Bailey AJ (1995) J Mol Biol 245:437

    Article  CAS  Google Scholar 

  39. Miles CA, Bailey AJ (2001) Matrix Biol 20:263

    Article  CAS  Google Scholar 

  40. Clark AH (1992) In: Schwartzberg HG, Hartel RW (eds) Physical chemistry of foods. Marcel Dekker Inc., New York

    Google Scholar 

  41. Djabourov M, Leblond J, Papon PJ (1988) J Phys France 49:319

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Neil Buunk of Electrospinz Ltd, Blenheim, New Zealand, for the laboratory electrospinning machines. Jon Stanger is a Technology in Industry Fellow, funded by the NZ Foundation for Research Science and Technology (FRST). This study was funded by the New Zealand Institute for Plant and Food Research Ltd, and the FRST Technology for Business Growth “FibreTech” project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathleen Hofman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hofman, K., Tucker, N., Stanger, J. et al. Effects of the molecular format of collagen on characteristics of electrospun fibres. J Mater Sci 47, 1148–1155 (2012). https://doi.org/10.1007/s10853-011-5775-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5775-2

Keywords

Navigation