Skip to main content
Log in

Isothermal aging effect on the microstructure and dry sliding wear behavior of Co–28Cr–5Mo–0.3C alloy

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study, an attempt to investigate the role of isothermal aging on the microstructure and dry sliding wear behavior of Co–28Cr–5Mo–0.3C alloy was made. Regarding the results, it is clear that isothermal aging at 850 °C for 8 and 16 h contributed to the formation of lamellar type carbides (γ-fcc + M23C6) at the grain boundary regions. Moreover, at higher aging times (24 h), the lamellar type carbides decreased whereas severe precipitation of carbides was found to occur on the stacking faults. Furthermore, according to X-ray diffraction results, 24 h isothermal aging of solution treated specimens did not lead to complete fcc → hcp transformation. The wear properties of as-cast and heat treated samples were determined at 0.5 ms−1 speed several under normal applied loads such as 50, 80, and 110 N. At the lowest load applied (50 N), isothermally aged specimens for 8 and 16 h have higher wear resistance probably due to more volume fraction of lamellar-type carbides when compared to as-cast for both 4 and 24 h aged specimens. But, at higher applied loads (80 and 110 N) due to the formation of adhesive oxide layer on the as-cast specimen surface, the wear rate of as-cast samples is lower compared with all heat treated specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Saldivar AJ, Lopez HF (2001) Scr Mater 45:427

    Article  CAS  Google Scholar 

  2. Upadhyay D, Panchal MA, Dubey RS, Srivastava VK (2006) Mater Sci Eng A 432:1

    Article  Google Scholar 

  3. Huang P, Lopez HF (1999) Mater Lett 39:249

    Article  CAS  Google Scholar 

  4. Montero-Ocampo C, Talavera M, Lopez HF (1999) Metall Mater Trans A 30:611

    Article  Google Scholar 

  5. Lashgari HR, Zangeneh Sh, Hasanabadi F, Saghafi M (2010) Mater Sci Eng A 527:4082

    Article  Google Scholar 

  6. Zangeneh Sh, Lashgari HR, Saghafi M, Karshenas M (2010) Mater Sci Eng A 527:6494

    Article  Google Scholar 

  7. Garcia A, Medrano A, Rodriguez A (1999) Metall Mater Trans 30:1177

    Article  Google Scholar 

  8. Garza Z, Herrera-Trejo M, Castro M, Ramı´rez E, Me´ndez M, Me´ndez J (2001) J Mater Eng Perf 10:153

    Article  Google Scholar 

  9. Escobedo J, Mendez J, Cortes D, Gomez J, Mendez M, Mancha H (1996) Mater Des 17:79

    Article  CAS  Google Scholar 

  10. Ramiırez-Vidaurri LE, Castro-Roman M, Herrera-Trejo M, Garcia-Lopez CV, Almanza-Casas E (2009) J Mater Proc Technol 209:1681

    Article  Google Scholar 

  11. Taylor RNJ, Waterhouse RB (1983) J Mater Sci 18:3265. doi:https://doi.org/10.1007/BF00544151

    Article  CAS  Google Scholar 

  12. Giacchi JV, Morando CN, Fornaro O, Palacio HA (2011) Mater Charact 62:52

    Article  Google Scholar 

  13. Lopez HF, Saldivar-Garcia AJ (2008) Metall Mater Trans A 39:8

    Article  Google Scholar 

  14. ASM Handbook (1992) In: Friction, lubrication, and wear technology, vol. 18. ASM International, Hardcover

  15. Ueda M, Uchino K, Kobayashi A (2002) Wear 253:107

    Article  CAS  Google Scholar 

  16. Clayton P (1980) Wear 60:75

    Article  CAS  Google Scholar 

  17. Bhushan B (ed) (2001) In: Modern tribology handbook, vol. 1. CRC press LLC, Boca Raton

  18. Bhansali KJ, Miller AE (1982) Wear 75:241

    Article  CAS  Google Scholar 

  19. Yu H, Ahmed R, Lovelock HV, Davies S (2009) J Tribo 131:11601

    Article  Google Scholar 

  20. Clemow AJT, Daniell BL (1980) Wear 61:219

    Article  CAS  Google Scholar 

  21. Haung P, Rodriguez AS, Lopez HF (1999) Mater Sci Tech 15:1324

    Article  Google Scholar 

Download references

Acknowledgement

H. R. Lashgari wishes to acknowledge the assistance of Mr. Saghafi for operating SEM in this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. R. Lashgari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lashgari, H.R., Zangeneh, S. & Ketabchi, M. Isothermal aging effect on the microstructure and dry sliding wear behavior of Co–28Cr–5Mo–0.3C alloy. J Mater Sci 46, 7262–7274 (2011). https://doi.org/10.1007/s10853-011-5686-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5686-2

Keywords

Navigation