Skip to main content
Log in

Processing issues related to the bi-dimensional ionic conductivity of BIMEVOX ceramics

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Bismuth vanadate, Bi4V2O11, and its doped variations, Bi4(Co0.15V0.85)2O11, Bi4(Cu0.1V0.9)2O11, and Bi4(Cu0.05Ti0.05V0.90)2O11 are investigated with respect to relative processability and total conductivity. In conventionally prepared (pressure-less sintered) ceramic disks, the single-substitution compounds show signs of exaggerated grain growth with significant c-axis preferred orientation. The doubly substituted Bi4(Cu0.05Ti0.05V0.90)2O11 is found to have the widest processing window, resulting in sintered monoliths with the highest relative density and no preferred orientation. It also shows the highest conductivity (7 × 102 (Ωcm)1) at 500 °C, as measured by impedance spectroscopy. Activation energies for conduction of the four compounds are reported and found to be comparable to earlier study. Hot forged samples of Bi4(Cu0.05Ti0.05V0.90)2O11 are prepared for the first time, with only moderate texturing achieved. We assert that the lack of texture in Bi4(Cu0.05Ti0.05V0.90)2O11 is responsible for the higher conductivity measured through the sample thickness when compared to Bi4(Co0.15V0.85)2O11, Bi4(Cu0.1V0.9)2O11 and other related compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pirovano C, Vannier RN, Capoen E, Nowogrocki G, Boivin JC, Mairesse G, Anne M, Dooryhee E, Strobel P (2003) Solid State Ionics 159:181

    Article  CAS  Google Scholar 

  2. Chetouani A, Taouk B B, Bordes-Richard E, Abi-Aad E, Aboukais A (2003) Appl Catal A 252:269

    Article  CAS  Google Scholar 

  3. Cho H, Sakai G, Shimanoe K, Yamazoe N (2005) Sensors Actuators B 109:307

    Article  CAS  Google Scholar 

  4. Kida T T, Minami T, Kishi S, Yasa M, Shimanoe K, Yamazoe N (2009) Sensors Actuators B 137:147

    Article  Google Scholar 

  5. Wang J, Ji B, Zhu X, Cong Y, Yang W (2009) Chin J Catal 30:926

    Article  Google Scholar 

  6. Abrahams I, Krok F (2003) Solid State Ionics 157:139

    Article  CAS  Google Scholar 

  7. Abraham F, Boivin J, Mairesse G, Nowogrocki G (1990) Solid State Ionics 40–41:934

    Article  Google Scholar 

  8. Muller C, Anne M, Bacmann M, Bonnet M (1998) J Solid State Chem 141:241

    Article  CAS  Google Scholar 

  9. Abraham F, Debreuille-Gresse M, Mairesse G, Nowogrocki G (1988) Solid State Ionics 28–30:529

    Article  Google Scholar 

  10. Varma K, Subbanna G, Row T, Rao C (1990) J Mater Res 5:2718

    Article  CAS  Google Scholar 

  11. Lazure S, Vannier R, Nowogrocki G, Mairesse G, Muller C, Anne M, Stobel P (1995) J Mater Chem 5:1395

    Article  CAS  Google Scholar 

  12. Yaremchenko A, Kharton V, Naumovich E, Marques F (2002) Mater Chem Phys 77:552

    Article  Google Scholar 

  13. Paydar M, Hadian A, Fafilek G (2004) J Mater Sci 39:1357. doi:https://doi.org/10.1023/B:JMSC.0000013896.02030.9d

    Article  CAS  Google Scholar 

  14. Emel’yanova Y, Tsygankova E, Petrova S, Buyanova E, Zhukovskii V (2007) Russ J Electrochem 43:737

    Article  Google Scholar 

  15. Muller C, Chateigner D, Anne M, Bacmann M, Fouletier J, Rango P (1996) J Phys D 29:3106

    Article  CAS  Google Scholar 

  16. Kim S, Miyayama M (1997) Solid State Ionics 104:295

    Article  CAS  Google Scholar 

  17. Shantha K, Varma K (1997) Mater Res Bull 32:1581

    Article  CAS  Google Scholar 

  18. Pell J, Ying J, Zur Loye H (1995) Mater Lett 25:157

    Article  CAS  Google Scholar 

  19. Hervoches C, Steil M, Muccillo R (2004) Solid State Sci 6:173

    Article  CAS  Google Scholar 

  20. Castro A, Millan P, Ricote J, Pardo L (2000) J Mater Chem 10:767

    Article  CAS  Google Scholar 

  21. Roy B, Fuierer P (2009) J Mater Res 24:3078

    Article  CAS  Google Scholar 

  22. Roy B, Fuierer P (2009) J Am Ceram Soc 92:520

    Article  CAS  Google Scholar 

  23. Simner S, Suarez-Sandoval D, Mackenzie J, Dunn B (1997) J Am Ceram Soc 80:2563

    Article  CAS  Google Scholar 

  24. Steil M, Fouletier J, Kleitz M, Labrune P (1999) J Eur Ceram Soc 19:815

    Article  CAS  Google Scholar 

  25. Steil M, Ratajczak F, Capoen E, Pirovano C, Vannier R, Mairesse G (2005) Solid State Ionics 176:2305

    Article  CAS  Google Scholar 

  26. Powder Diffraction File card # 14-0688

  27. Powder Diffraction File # 039-0105

  28. Dygas J, Krok F, Bogusz W, Kurek P, Reiselhuber K, Breitner M (1994) Solid State Ionics 70–71:239

    Article  Google Scholar 

  29. Kezionis A, Bogusz W, Krok F, Dygas J, Orliukas A, Abrahams I, Gebicki W (1999) Solid State Ionics 119:145

    Article  CAS  Google Scholar 

  30. Krok F, Bogusz W, Kurek P, Jakubowski W, Dygas J, Bangobango D (1994) Solid State Ionics 70–71:211

    Article  Google Scholar 

  31. Lotgering F (1959) J Inorg Nucl Chem 9:113

    Article  CAS  Google Scholar 

  32. Fuierer P, Newnham R (1991) J. Amer. Ceram. Soc. 74:2876

    Article  CAS  Google Scholar 

  33. Fuierer P, Shrout T, Newnham R (1992) In: Smart materials fabrication and materials for micro-electro-mechanical systems, MRS Symposium Proceedings, vol 276, Pittsburgh, p 51

  34. Nichtawitz T, Fuierer P (1994) In: Pandey R, Liu M, Safari A (eds) Proceedings of 9th international symposium on applications of ferroelectrics. Pennsylvania USA, p 126

  35. Shen Y, Clarke D, Fuierer P (2008) Appl Phys Lett 93:102907

    Article  Google Scholar 

  36. Cahn J (1962) Acta Metall 10:789

    Article  CAS  Google Scholar 

  37. Rahaman M, Zhou Y (1995) J Eur Ceram Soc 15:939

    Article  CAS  Google Scholar 

  38. Rahaman M (2007) In: Ceramic processing. CRC Press, Boca Raton, p 398

Download references

Acknowledgements

Funding from the Deutscher Akademischer Austauschdienst (DAAD) to support a summer research visit by the principal author to the University of Bayreuth is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Fuierer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fuierer, P., Maier, R., Röder-Roith, U. et al. Processing issues related to the bi-dimensional ionic conductivity of BIMEVOX ceramics. J Mater Sci 46, 5447–5453 (2011). https://doi.org/10.1007/s10853-011-5486-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5486-8

Keywords

Navigation