Skip to main content

Advertisement

Log in

Electrocatalytic activity of undoped and Mn-doped Zn(S,Se)-carbon nanocomposites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Electrocatalytic materials for applications, e.g. in fuel cells are often composites of (conducting) carbon variants and nanosized metal particles, typically from the family of platinum or nickel. They share some common problems (most notably a tendency to agglomeration and poisoning, e.g. by CO or H2), which prevent their use in contact with, e.g. raw biogenic methane or ethanol. Highly purified fuels or reformation to hydrogen are therefore necessary for such purposes. As a potential alternative, this study describes electrocatalytic activity of composites of undoped and Mn-doped Zn(S,Se) nanoparticles and carbon in contact with ethanol. The results on ethanol oxidation on such electrodes in short-circuit mode are reported, as well as values for the open circuit voltage achieved so far. The focus of this report is the variation of the Se/S ratio in mixed nanocrystals of ZnS and ZnSe. The influence on the electrocatalytic activity by the varying band gap energy and absolute positions of the electronic levels of the doped as well as undoped chalcogenide nanoparticles is reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Klausch A, Althues H, Schrage C, Simon P, Szatkowski A, Bredol M, Adam D, Kaskel S (2010) J Lumin 130:692. doi:https://doi.org/10.1016/j.jlumin.2009.11.021

    Article  CAS  Google Scholar 

  2. Bredol M, Matras K, Szatkowski A, Sanetra J, Prodi-Schwab A (2009) Sol Energy Mater Sol Cells 93(5):662. doi:https://doi.org/10.1016/j.solmat.2008.12.015

    Article  CAS  Google Scholar 

  3. Yang P, Szatkowski A, Bredol M (2009) J Sol–Gel Sci Technol 51(3):306. doi:https://doi.org/10.1007/s10971-009-1979-1

    Article  CAS  Google Scholar 

  4. Hebalkar N, Lobo A, Sainkar S, Pradhan S, Vogel W, Urban J, Kulkarni S (2001) J Mater Sci 36:4377. doi:https://doi.org/10.1023/A:1017910131081

    Article  CAS  Google Scholar 

  5. Zhang WH, Shi JL, Chen HR, Hua ZL, Yan DS (2001) Chem Mater 13:648

    Article  CAS  Google Scholar 

  6. Matras K, Bredol M, Szatkowski A, Sakhno O, Stumpe J, Bogdal D (2008) Mol Cryst Liq Cryst 485:28

    Article  Google Scholar 

  7. Althues H, Palkovits R, Rumplecker A, Simon P, Sigle W, Bredol M, Kynast U, Kaskel S (2006) Chem Mater 18:1068

    Article  CAS  Google Scholar 

  8. Wang C, Gao X, Ma Q, Su X (2009) J Mater Chem 19:7016. doi:https://doi.org/10.1039/b909546b

    Article  CAS  Google Scholar 

  9. Hu JS, Ren LL, Guo YG, Liang HP, Cao AM, Wan LJ, Bai CL (2005) Angew Chem Int Ed 44(8):1269

    Article  CAS  Google Scholar 

  10. Fujiwara H, Hosokawa H, Murakoshi K, Wada Y, Yanagida S (1998) Langmuir 14:5154

    Article  CAS  Google Scholar 

  11. Wang C, Ao Y, Wang P, Zhang S, Qian J, Hou J (2010) Appl Surf Sci 256:4125. doi:https://doi.org/10.1016/j.apsusc.2010.01.095

    Article  CAS  Google Scholar 

  12. Taghvaei V, Habibi-Yangjeh A, Behboudnia M (2010) Physica E 42:1973. doi:https://doi.org/10.1016/j.physe.2010.02.023

    Article  CAS  Google Scholar 

  13. Kowal A, Li M, Shao M, Sasaki K, Vukmirovic M, Zhang J, Marinkovic N, Liu P, Frenkel A, Adzic R (2009) Nat Mater 8:325. doi:https://doi.org/10.1038/NMAT2359

    Article  CAS  Google Scholar 

  14. Mann J, Yao N, Bocarsly AB (2006) Langmuir 22:10432

    Article  CAS  Google Scholar 

  15. Nanda J, Sapra S, Sarma D, Chandrasekharan N, Hodes G (2000) Chem Mater 12:1018

    Article  CAS  Google Scholar 

  16. Bredol M, Kaczmarek M (2010) J Phys Chem A 114(11):3950. doi:https://doi.org/10.1021/jp907369f

    Article  CAS  Google Scholar 

  17. McCreery RL (2008) Chem Rev 108:2646

    Article  CAS  Google Scholar 

  18. Brus LE (1984) J Chem Phys 80(9):4403. doi:https://doi.org/10.1063/1.447218

    Article  CAS  Google Scholar 

  19. Jasieniak J, Pacifico J, Signorini R, Chiasera A, Ferrari M, Martucci A, Mulvaney P (2007) Adv Funct Mater 17:1654. doi:https://doi.org/10.1002/adfm.200600955

    Article  CAS  Google Scholar 

  20. Van de Walle CG, Neugebauer J (2003) Nature 423:626

    Article  Google Scholar 

  21. Zhuang J, Zhang X, Wang G, Li D, Yang W, Li T (2003) J Mater Chem 13:1853

    Article  CAS  Google Scholar 

  22. Rogach A, Kornowski A, Gao M, Eychmüller A, Weller H (1999) J Phys Chem B 103:3065. doi:https://doi.org/10.1021/jp984833b

    Article  CAS  Google Scholar 

  23. Rogach A, Katsikas L, Kornowski A, Su D, Eychmüller A, Weller H (1996) Ber Bunsenges Phys Chem 100:1772

    Article  CAS  Google Scholar 

  24. Du J, Fu L, Liu Z, Han B, Li Z, Liu Y, Sun Z, Zhu D (2005) J Phys Chem B 109:12772

    Article  CAS  Google Scholar 

  25. Xiao Q, Xiao C (2008) Opt Mater 31(2):455. doi:https://doi.org/10.1016/j.optmat.2008.06.010

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the German state of North-Rhine–Westphalia in the framework of the competence platform “Optical Technologies”. Thanks are due to the groups of Thomas Jüstel and Ulrich Kynast at Fachhochschule Münster for help with the spectroscopical measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Bredol.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaczmarek, M., Bredol, M. Electrocatalytic activity of undoped and Mn-doped Zn(S,Se)-carbon nanocomposites. J Mater Sci 46, 5400–5405 (2011). https://doi.org/10.1007/s10853-011-5479-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5479-7

Keywords

Navigation