Skip to main content
Log in

Analysis of the hygroexpansion of a lignocellulosic fibrous material by digital correlation of images obtained by X-ray synchrotron microtomography: application to a folding box board

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This study provides original experimental data on the microstructural mechanisms of the hygroexpansion of a material made up of lignocellulosic fibres. A paperboard made up of several layers was chosen and subjected to relative humidity variations during X-ray microtomography scanning. The 3D images of the evolving media were analysed using a digital image correlation technique to measure the displacement field within the studied material. This technique allowed the hygroexpansion of the studied material and of each layer of this latter to be analysed in the in-plane and out-of-plane directions. Results show that the hygroexpansion is highly anisotropic. The microstructural hygroexpansive mechanisms for the pore and fibre phases could also be revealed. They have been shown to depend strongly on the fibre content of the fibrous layers. This analysis provides also useful information concerning the size of the Representative Elementary Volume (REV) for the hygroexpansion phenomenon of dense lignocellulosic fibrous networks. In view of the obtained results, the relevancy of common theoretical models used to predict the hygroexpansion of materials such as papers and boards is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Stöckmann VE (1974) Tappi 57(10):108

    Google Scholar 

  2. Uesaka T (2002) Handbook of physical testing of paper, Chapter 3. Dimensional stability and environmental effects on paper properties. Marcel Dekker, Inc., New York, pp 115

    Google Scholar 

  3. Uesaka T, Moss C, Nanri Y (1992) J Pulp Paper Sci 18(1):11

    CAS  Google Scholar 

  4. Uesaka T (1994) J Mater Sci 29:2373. doi:10.1007/BF00363429

    Article  Google Scholar 

  5. Salmén L, Boman R, Fellers C, Htun M (1987) Nord Pulp Paper Res 2(4):127

    Article  Google Scholar 

  6. Nanri T, Uesaka T (1993) Tappi J 76(6):62

    CAS  Google Scholar 

  7. Gallay W (1973) Tappi 56(12):90

    Google Scholar 

  8. Salmén L, Fellers C, Htun M (1985) In: Fundamental Research Symposium, Oxford

  9. Salmén L, Fellers C (1989) J Pulp Paper Sci 15(2):63

    Google Scholar 

  10. Carlsson L (1981) Fibre Sci Technol 14:201

    Article  Google Scholar 

  11. Lif J, Fellers C, Söremark C, Sjoödahl M (1995) J Pulp Paper Sci 21(9):302

    Google Scholar 

  12. Rolland du Roscoat S, Thibault X, Bloch J-F (2005) J Phys D Appl Phys 38:A78

    Article  Google Scholar 

  13. Rollanddu Roscoat S, Decain M, Thibault X, Geindreau G, Bloch J-F (2007) Acta Mater 55:2841

    Article  CAS  Google Scholar 

  14. Neagu R, Gamstedt E, Lindström M (2005) Composites A 36:772

    Article  Google Scholar 

  15. Vacher P, Dumoulin S, Morestin F, Mguil-Touchal S (1999) Proc Inst Mech Eng C ImechE 213:811

    Article  Google Scholar 

  16. Niskanen K (1998) Papermaking science and technology, book 16, paper physics. Fapet Oy, Helsinki

    Google Scholar 

  17. Paulapuro H (2000) Papermaking science and technology, book 1, stock preparation and wet end. Fapet Oy, Helsinki

    Google Scholar 

  18. Rolland du Roscoat S, Decain M, Geindreau C, Thibault X, Bloch J-F (2008) Appita J 61:286

    Google Scholar 

  19. Le Corre S, Dumont P, Orgéas L, Favier D (2005) J Rheol 49:1029

    Article  CAS  Google Scholar 

  20. Toll S (1993) J Rheol 37:123

    Article  CAS  Google Scholar 

  21. Batchelor WJ, He J, Sampson WW (2006) J Mater Sci 41:837710.1007/s10853-006-0889-7

    Article  CAS  Google Scholar 

  22. He J, Batchelor WJ, Johnston RE (2004) Appita J 57(4):292

    Google Scholar 

  23. Sampson W (2009) Int Mater Rev 54:134

    Article  CAS  Google Scholar 

  24. Alava M, Niskanen K (2006) Rep Prog Phys 69:669

    Article  Google Scholar 

  25. Schlecht M, Schulte K, Hyer MW (1995) Compos Struct 32:627

    Article  Google Scholar 

  26. Gendron G, Dano M, Cloutier A (2004) Compos Sci Technol 64:619

    Article  Google Scholar 

  27. Bortolin G, Gutman P, Nilsson B (2006) J Process Contr 16:419

    Article  CAS  Google Scholar 

  28. Dano M-L, Bourque J-P (2009) Int J Solids Struct 46:1305

    Article  Google Scholar 

  29. Reddy J (2000) Mechanics of laminated composite plates and shells theory and analysis. 2nd edn. CRC Press LCC publishing, Boca, Raton, FL, USA

    Google Scholar 

Download references

Acknowledgements

This study was performed within the framework of the ESRF Long Term Project (exp. MA127) “Heterogeneous Fibrous Materials”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre J. J. Dumont.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Viguié, J., Dumont, P.J.J., Mauret, É. et al. Analysis of the hygroexpansion of a lignocellulosic fibrous material by digital correlation of images obtained by X-ray synchrotron microtomography: application to a folding box board. J Mater Sci 46, 4756–4769 (2011). https://doi.org/10.1007/s10853-011-5386-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5386-y

Keywords

Navigation