Skip to main content
Log in

Effect of the interphase microstructure on the behavior of carbon fiber/epoxy resin model composite in a thermal environment

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The effect of the interfacial microstructure on the stress transfer for a single-fiber carbon fiber/epoxy matrix composite with two different levels of fiber–matrix adhesion for a temperature range between 25 and 115 °C was studied. The heterogeneity of the matrix in the neighborhood of the fiber on the effective mechanical properties of the composite and the possible interactions fiber–matrix that could lead to the development of an interphase dissimilar to the bulk matrix were also analyzed. The preferential absorption of one component of the matrix on the carbon fiber surface is considered to play a key factor on the interfacial behavior for a varying temperature. The matrix-interphase amine-resin stoichiometry is considered to be the main parameter controlling the single-fiber composite behavior when exposed to high temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ohsawa T, Nakayama A, Miwa M, Hasegawa A (1978) J Appl Polym Sci 22:3203

    Article  CAS  Google Scholar 

  2. Rao V, Drzal LT (1992) J Adhes 37:83

    Article  CAS  Google Scholar 

  3. Skourlis TP, McCullough RL (1993) Comp Sci Tech 49:363

    Article  CAS  Google Scholar 

  4. Detassis M, Pegoretti A, Migliaresi C (1995) Comp Sci Tech 53:39

    Article  CAS  Google Scholar 

  5. Varelidis PC, McCoullough RL, Papaspyrides CD (1998) Comp Sci Tech 58:1487

    Article  CAS  Google Scholar 

  6. Walther MB, Reifsnider KL, Madhukar M, Genidy MS (2001) J Comp Tech Res 23:36

    Article  CAS  Google Scholar 

  7. Cho D, Choi Y, Chang JH, Drzal LT (2006) Comp Interface 13:215

    Article  CAS  Google Scholar 

  8. Palmese GR, McCullough RL (1992) J Appl Polym Sci 46:1863

    Article  CAS  Google Scholar 

  9. Kardos JL (1985) In: Proceedings of the symposium on polymer composite: interfaces, held at the American Chemical Society meeting, Seattle Washington. Plenum Press, New York

  10. Yang F, Pitchumani R (2004) Comp Sci Tech 64:1437

    Article  CAS  Google Scholar 

  11. Attwood D, Marshall PI (1996) Comp A 27A:775

    Article  CAS  Google Scholar 

  12. Fitzer F, Huttner W, Weiss R (1994) Carbon 18:389

    Article  Google Scholar 

  13. Drzal LT, Ric MJ, Koenig M, Lloyd P (1983) J Adhes 16:133

    Article  CAS  Google Scholar 

  14. Montes-Moran Ma, Young RJ (2002) Carbon 40(6):845

    Article  CAS  Google Scholar 

  15. Montes-Moran Ma, Young RJ (2002) Carbon 40(6):857

    Article  CAS  Google Scholar 

  16. Montes-Moran MA, Martinez-Alonso A, Tascon JMD, Young RJ (2001) Comp A 32:361

    Article  Google Scholar 

  17. Wimolkiatisak AS, Bell JP (1989) Polym Comp 10:162

    Article  CAS  Google Scholar 

  18. Herrera PJ, Drzal LT (1992) Composites 23(6):2

    Article  Google Scholar 

  19. Gupta VB, Drzal LT, Rich MJ (1985) J Appl Polym Sci 30:4467

    Article  CAS  Google Scholar 

  20. Nielsen LE, Landel RF (1994) Mechanical properties of polymers and composites. Marcel Decker, New York

    Google Scholar 

  21. Detassis M, Pegoretti A, Migliaresi C, Wagner D (1996) J Mater Sci 31:2385. doi:10.1007/BF01152951

    Article  CAS  Google Scholar 

  22. Gerard G, Gilbert AC (1957) J Appl Mech (ASME) 24:355

    CAS  Google Scholar 

  23. Quek MY (2004) Int J Adhes Adhes 24:379

    Article  CAS  Google Scholar 

  24. Whitney JM, Drzal LT (1987) ASTM STP 937, American Society for Testing and Materials, pp 179–196

  25. Wagner CD, Riggs WM and Muilenberg GE (1978) Handbook of X-ray photoelectron spectroscopy. Perkin Elmer Corporation, Eden Prairie

  26. Beamson G, Briggs D (1992) High resolution XPS of organic polymers. The Scienta ESCA300 Database. Wiley, Chichester

    Google Scholar 

  27. Xie Y, Sherwood PM (1990) Chem Mater 2:293

    Article  CAS  Google Scholar 

  28. Pamula E, Rouxhet PG (2003) Carbon 41:1905

    Article  CAS  Google Scholar 

  29. Zielke U, Huttinger KJ, Hoffman WP (1996) Carbon 34:983

    Article  CAS  Google Scholar 

  30. Jing SY, Lee HJ, Choi CK (2002) J Korean Phys Soc 41:769

    CAS  Google Scholar 

  31. Morra M, Ochiello E, Garbassi F (1993) J Appl Polym Sci 48:1331

    Article  CAS  Google Scholar 

  32. Toth A, Bertóti I, Blazso M, Bánhegyi G, Bognar A, Szaplonczay P (1994) J Appl Polym Sci 52:1293

    Article  CAS  Google Scholar 

  33. Britcher L, Kehoe D, Matisons J, Swincer G (1995) Macromolecules 28:3110

    Article  CAS  Google Scholar 

  34. Gulyás J, Rosenberger S, Földes E, Pukanszky B (2000) Polym Compos 21:387

    Article  Google Scholar 

  35. Farhadyar N, Rahimi N, Langroundi AE (2005) Iran Polym J 14:155

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support from Consejo Nacional de Ciencia y Tecnología for the scholarship granted to Mr. Emilio Pérez-Pacheco and the funding provided for project 31272-U.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. J. Herrera-Franco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pérez-Pacheco, E., Moreno-Chulim, M.V., Valadez-González, A. et al. Effect of the interphase microstructure on the behavior of carbon fiber/epoxy resin model composite in a thermal environment. J Mater Sci 46, 4026–4033 (2011). https://doi.org/10.1007/s10853-011-5331-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5331-0

Keywords

Navigation