Skip to main content
Log in

Ag/GaP nanoparticles with photooxidation property under visible light

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This article reports the use of Gallium phosphide (GaP) and Ag/GaP nanoparticles, which can harness visible light to decompose organic dye in aqueous solution. The Ag(1.139 wt%)/GaP and Ag(5.225 wt%)/GaP nanoparticles were prepared by the liquid phase reduction of silver nitrate with hydrazine hydrate. The application of X-ray fluorescence and high-resolution transmission electron micrograph morphology has provided direct evidence of the presence of silver on the GaP nanoparticles. Under visible light, the experiments on the photocatalytic degradation of crystal violet in solution over the GaP and Ag/GaP nanoparticles were carried out. The results reveal that small size and number density of Ag domains deposited on GaP nanoparticles have enhanced photocatalytic efficiencies, as compared to large size and number density of Ag domains. This study suggests the potential of both GaP and Ag/GaP nanoparticles as photofunctional materials for waste-water cleaning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Humphreys RG, Rössler U, Cardona M (1978) Phys Rev B 18(10):5590

    Article  CAS  Google Scholar 

  2. Dean PJ, Kaminsky G, Zetterstrom RB (1967) J Appl Phys 38(9):3551

    Article  CAS  Google Scholar 

  3. Tsay JF, Mitra SS, Bendow B (1974) Phys Rev B 10(4):1476

    Article  CAS  Google Scholar 

  4. Micic OI, Sprange JR, Curtis CJ et al (1995) J Phys Chem 99(19):7754

    Article  CAS  Google Scholar 

  5. Shi WS, Zheng YF, Wang N et al (2001) J Vac Sci Technol B 19(4):1115

    Article  CAS  Google Scholar 

  6. Tang CC, Fan SS, de la Chapelle ML et al (2000) Adv Mater 12(18):1346

    Article  CAS  Google Scholar 

  7. Chen LY, Luo T, Huang MX et al (2004) Solid State Commun 132(10):667

    Article  CAS  Google Scholar 

  8. Cui DL, Pan JQ, Zhang ZC et al (2000) Prog Crystal Growth Charact Mater 40(1):145

    Article  CAS  Google Scholar 

  9. Kim JR, Kim BK, Lee JO et al (2004) Nanotechnology 15(11):1397

    Article  CAS  Google Scholar 

  10. Tsai JS, Chen FR, Kai JJ et al (2004) J Appl Phys 95(4):2015

    Article  CAS  Google Scholar 

  11. Wu Q, Hu Z, Liu C et al (2005) J Phys Chem B 109(42):19719

    Article  CAS  Google Scholar 

  12. Kimberly AD, Knut D, Thomas MS et al (2004) J Crystal Growth 272(1):131

    Article  Google Scholar 

  13. Seo HW, Bae SY, Park J et al (2003) Chem Phys Lett 378(3–4):420

    Article  CAS  Google Scholar 

  14. Han DS, Bae SY, Seo HW et al (2005) J Phys Chem B 109(19):9311

    Article  CAS  Google Scholar 

  15. Kang DH, Ko JH, Bae EJ et al (2004) J Appl Phys 96(12):7574

    Article  CAS  Google Scholar 

  16. Sadeghi M, Liu W, Zhang T-G, Stavropoulos P, Levy B (1996) J Phys Chem 100(50):19466

    Article  CAS  Google Scholar 

  17. Litter MI (1999) Appl Catal B 23(2–3):89

    CAS  Google Scholar 

  18. Arabatzis IM, Stergiopoulos T, Bernard MC, Labou D, Neophytides SG, Falaras P (2003) Appl Catal B 42(2):187

    Article  CAS  Google Scholar 

  19. Hirakawa T, Kamat PV (2005) J Am Chem Soc 127(11):3928

    Article  CAS  Google Scholar 

  20. Elahifard MR, Rahimnejad S, Haghighi S, Gholami MR (2007) J Am Chem Soc 129(31):9552

    Article  CAS  Google Scholar 

  21. Awazu K, Fujimaki M, Rockstuhl C, Tominaga J, Murakami H, Ohki Y, Yoshida N, Watanabe T (2008) J Am Chem Soc 130(5):1676

    Article  CAS  Google Scholar 

  22. Hu C, Lan YQ, Qu JH, Hu XX, Wang AM (2006) J Phys Chem B 110(9):4066

    Article  CAS  Google Scholar 

  23. Zhang Z-C, Zhang Q-X (2010) J Nanopart Res 12(3):961

    Article  CAS  Google Scholar 

  24. Zhang ZC, Zhang N (2010) Rare Metals 29(6):561

    Article  CAS  Google Scholar 

  25. Zhang Q-X, Zhang Z-C, Wang B-P (2008) J Phys D 41(18):185403

    Article  Google Scholar 

  26. Zhang Q, Zhang Z, Zhou Z (2008) Appl Phys B 93(2–3):589

    Article  CAS  Google Scholar 

  27. Kuhn J, Korder S, Arduini-Schuster MC, Caps R, Fricke J (1993) Rev Sci Instrum 64(9):2523

    Article  CAS  Google Scholar 

  28. Burger T, Ploss HJ, Kuhn J, Ebel S, Fricke J (1997) Appl Spectrosc 51(9):1323

    Article  CAS  Google Scholar 

  29. Morrison SR (1980) Electrochemistry or semiconductor and oxidized metal electrodes. Plenum Press, New York

    Google Scholar 

  30. Hotop H, Lineberger WC (1985) J Phys Chem Ref Data 14(3):731

    Article  CAS  Google Scholar 

  31. Dweydari AW, Mee CHB (1973) Phys Status Solid A 17(1):247

    Article  CAS  Google Scholar 

  32. Gerisher H, Heller A (1991) J Phys Chem 95(13):5261

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao-Chun Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, ZC., Li, JL. Ag/GaP nanoparticles with photooxidation property under visible light. J Mater Sci 46, 3590–3596 (2011). https://doi.org/10.1007/s10853-011-5274-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5274-5

Keywords

Navigation