Skip to main content
Log in

Properties of biocomposites: influence of preparation method, testing environment and a comparison with theoretical models

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Biocomposites were prepared by solvent casting from poly(vinyl) alcohol and mechanically microfibrillated (MFC) birch pulp. Preparations varied in concentration of polymer solution, mixing time of cellulose/PVA dispersion and were either degassed or not. In addition, specimens were tested in different levels of relative humidity at a constant temperature. The results show that the preparation method has a significant influence on mechanical properties. It was observed that aggregation of microfibrills was easier at lower concentrations of polymer solution leading to inferior properties of composites. Degassing provided increase in Young’s modulus and tensile strength at MFC loads below 10% (w/w). However, there was no significant change in composites density. Longer mixing time significantly deteriorated mechanical properties of biocomposites. The relative humidity proved to be very important factor. The properties of composites conditioned at 45% RH showed higher strength and stiffness properties than conditioned at 55 %RH. The experimental data were in a good agreement with percolation model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. Elemental chlorine free—bleaching without chlorine gas or hypochlorite, but chlorine dioxide (ClO2) is used in one or more stages.

References

  1. Lars B (2005) In: Amar MK, Manjusri M, Drzal LT (eds) Natural fibers, biopolymers and biocomposites. Taylor & Francis, Routledge

  2. William HBrown (ed) (1988) Introduction to organic chemistry, 4th edn. Brooks/Cole publishing company, California

    Google Scholar 

  3. Azizi SM, Said A, Alloin F, Dufresne A (2005) Biomacromolecules 6:612

    Article  Google Scholar 

  4. Hubbe MA, Rojas OJ, Lucia LA et al (2008) BioResources 3:929

    Google Scholar 

  5. Dufresne A (2008) Can J Chem 86:484

    Article  CAS  Google Scholar 

  6. Eichhorn SJ, Dufresne A, Aranguren M et al (2010) J Mater Sci 45:1. doi:ESI-2010-007

    Article  CAS  Google Scholar 

  7. Orts WJ, Shey J, Imam SH et al (2005) J Environ Polym Degr 13:301

    Article  CAS  Google Scholar 

  8. Roohani M, Habibi Y, Belgacem NM et al (2008) Eur Polym J 44:2489

    Article  CAS  Google Scholar 

  9. Gopalan NK, Dufresne A (2003) Biomacromolecules 4:657

    Article  Google Scholar 

  10. Samir M, Alloin F, Dufresne A (2005) Biomacromolecules 6:612

    Article  CAS  Google Scholar 

  11. Garcia DR, Thielemans W, Dufresne A (2006) Cellulose 13:261

    Article  Google Scholar 

  12. Nakagaito AN, Yano H (2004) Appl Phys A 78:547

    Article  CAS  Google Scholar 

  13. Zimmermann T, Pöhler E, Geiger T (2004) Adv Eng Mater 6:754

    Article  Google Scholar 

  14. Nakagaito AN, Yano H (2005) Appl Phys A 80:155

    Article  CAS  Google Scholar 

  15. Chakraborty A, Sain M, Kortschot M (2006) Holzforschung 60:53

    Article  CAS  Google Scholar 

  16. Lu J, Wang T, Drzal LT (2008) Compos A 39:738

    Article  Google Scholar 

  17. Cheng Q, Wang S, Rials T et al (2007) Cellulose 14:593

    Article  CAS  Google Scholar 

  18. Cheng Q, Wang S, Rials TG (2009) Compos A 40:218

    Article  Google Scholar 

  19. Tang C, Liu H (2008) Compos A 39:1638

    Article  Google Scholar 

  20. Billmeyer FWJ (1984) Textbook of polymer science. Wiley, Singapore

    Google Scholar 

  21. Food and Agriculture Organization of the United Nations (FAO) and the World Health Organization (WHO) (2004) Polyvinyl alcohol. ftp://ftp.fao.org/es/esn/jecfa/cta/CTA_61_PVA.pdf. Accessed 27 Nov 2010

  22. Li H (2000) Macromolecules 33:465

    Article  CAS  Google Scholar 

  23. Cinelli P, Lawton JW, Gordon SH et al (2003) Macromoleculars no. 197:115

  24. Said AS, Alloin F, Paillet M et al (2004) Macromolecules 37:4313

    Article  Google Scholar 

  25. Nakagaito A, Yano H (2008) Cellulose 15:555

    Article  CAS  Google Scholar 

  26. Lu J, Askeland P, Drzal LT (2008) Polymer 49:1285

    Article  CAS  Google Scholar 

  27. Sakurada I, Nukushina Y, Ito T (1962) J Polym Sci 57:651

    Article  CAS  Google Scholar 

  28. Cheng Q, Wang S, Harper DP (2009) Compos A 40:583

    Article  Google Scholar 

  29. Cox HL (1952) Br J Appl Phys 3:72

    Article  Google Scholar 

  30. Davies WEA (1971) J Phys D 4:1176

    Article  Google Scholar 

  31. Davies WEA (1971) J Phys 4:318

    Google Scholar 

  32. Hill R (1963) J Mech Phys Solids 11:357

    Article  Google Scholar 

  33. Hill R (1964) J Mech Phys Solids 12:213

    Article  Google Scholar 

  34. Affdl JCH, Kardos JL (1976) Polym Eng Sci 16:344

    Article  Google Scholar 

  35. Allen G, Bowden MJ, Todd SM et al (1974) Polymer 15:28

    Article  CAS  Google Scholar 

  36. Favier V, Chanzy H, Cavaille JY (1995) Macromolecules 28:6365

    Article  CAS  Google Scholar 

  37. Favier V, Cavaille JY, Canova GR et al (1997) Polym Eng Sci 37:1732

    Article  CAS  Google Scholar 

  38. Chazeau L, Cavaillé JY, Canova G et al (1999) J Appl Polym Sci 71:1797

    Article  CAS  Google Scholar 

  39. Ouali N, Cavaille JY, Perez J (1991) Plast Rubber Compos Process Appl 16:55

    CAS  Google Scholar 

  40. Aharony A, Stauffer D (1994) Introduction to percolation theory, 2nd edn. Taylor & Francis, UK

    Google Scholar 

  41. Young RJ, Lovell PA (1991) Introduction to polymers, 2nd edn. Chapman & Hall, Cambridge

    Google Scholar 

  42. Taghizadeh MT, Mehrdad A (2003) Ultrason Sonochem 10:309

    Article  CAS  Google Scholar 

  43. Alexy P, Lacík I, Šimková B et al (2004) Polym Degrad Stab 85:823

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors would like to thank the Academy of Finland (decision number 12706) for financial support and DuPont Finland for providing poly(vinyl) alcohol. Thanks to Alexander Perros for help with SEM imaging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Bulota.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bulota, M., Jääskeläinen, A.S., Paltakari, J. et al. Properties of biocomposites: influence of preparation method, testing environment and a comparison with theoretical models. J Mater Sci 46, 3387–3398 (2011). https://doi.org/10.1007/s10853-010-5227-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-5227-4

Keywords

Navigation