Skip to main content
Log in

Complex permittivity and microwave absorbing properties of SiC fiber woven fabrics

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A comparative investigation of electric conductivity, complex permittivity, and microwave absorbing properties of KD-1 and Nicalon-202 fibers in the form of fabrics within the range of 8.2–12.4 GHz (X band) has been carried out. The electric conductivity value of KD-1 filaments is two orders larger than Nicalon-202. Both the values of real part (ε′) and imaginary part (ε″) of KD-1 fabrics are larger than their counterparts of Nicalon-202 especially the imaginary part, which is in agreement with larger DC conductivity (σd). The surface morphology and chemical component were characterized by SEM, EDS, Raman spectroscopy and XRD, which shows that both the KD-1 and Nicalon-202 SiC fibers are rich in carbon, while there is rich carbon layer on the surface of the former and the degree of order in the free carbon phase is higher compared with the latter. In addition, the amount of amorphous Si–C–O phase of KD-1 fibers is higher while the SiC crystal is smaller than Nicalon-202. The free carbon on the surface of KD-1 fibers can establish electric conductivity network. The larger ε″ and ε′ of KD-1 fabrics are believed to be mainly caused by conductive network established by rich carbon outer layer and relaxation polarization enhanced by more Si–C–O phase. The reflection loss of KD-1 and Nicalon-202 fabrics is −3.5 to 0.7 and −5.1 to −4.3 dB, calculated according to tested complex permittivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Abbas SM, Dixit AK, Chatterjee R, Goel TC (2007) J Magn Magn Mater 309:20

    Article  CAS  Google Scholar 

  2. Zhao DL, Li X, Shen ZM (2008) Compos Sci Technol 68:2902

    Article  CAS  Google Scholar 

  3. Meena RS, Bhattachrya S, Chatterjee R (2010) Mater Sci Eng B 171:133–138

    Google Scholar 

  4. Zhao DL, Luo F, Zhou WC (2010) J Alloys Compd 490:190

    Article  CAS  Google Scholar 

  5. Su XL, Zhou WC, Xu J, Li ZM, Luo F, Zhu DM (2010) J Alloys Compd 492:L12

    Article  Google Scholar 

  6. Bunsell AR, Piant A (2006) J Mater Sci 41:823. doi:10.1007/s10853-006-6566-z

    Article  CAS  Google Scholar 

  7. Naslain R (2004) Compos Sci Technol 64:155

    Article  CAS  Google Scholar 

  8. Naslain R (2005) Int J Appl Ceram Technol 2:5

    Article  Google Scholar 

  9. Riccardi B, Fenici P, Frias Rebelo A, Giancarli L, Le Marois G, Philippe E (2000) Fusion Eng Des 51–52:11

    Article  Google Scholar 

  10. Mouchon E, Colomban PH (1996) J Mater Sci 31:323. doi:10.1007/BF01139147

    Article  CAS  Google Scholar 

  11. Yu XM, Zhou WC, Luo F, Zheng WJ, Zhu DM (2009) J Alloys Compd 479:L1

    Article  CAS  Google Scholar 

  12. Liu HT, Cheng HF, Wang J, Tang GP (2010) J Alloys Compd 491:248

    Article  CAS  Google Scholar 

  13. Zhai XY, Zhou WC, Luo F, Zhu DM (2009) Rare Met 38:2089

    Article  CAS  Google Scholar 

  14. Chu ZY, Cheng HF, Zhou YJ, Wang Q (2010) J Mater Des 31:3140

    Article  CAS  Google Scholar 

  15. Liu XG, Wang YD, Wang L, Liu JG, Lan XY (2010) J Inorg Mater 25:1

    Google Scholar 

  16. Yao YM, Janis A, Klement U (2008) J Mater Sci 43:1094. doi:10.1007/s10853-007-2249-7

    Article  CAS  Google Scholar 

  17. Wang DY, Mao XH, Song YC, Wang YD (2009) J Inorg Mater 24:1209

    Article  CAS  Google Scholar 

  18. Liu HT, Cheng HF, Wang J, Tang GP, Che RC, Ma QS (2009) Mater Sci Eng A 525:121

    Article  Google Scholar 

  19. Naito Y, Suetake K (1971) IEEE Trans Microwave Technol 19:65

    Article  Google Scholar 

  20. Shimoo T, Okamura K, Mutoh W (2003) J Mater Sci 38:1653. doi:10.1023/A:1023207222208

    Article  CAS  Google Scholar 

  21. Takeda M, Imai Y, Ichikawa H, Kasai N, Seguchi T, Okamura K (1999) Compos Sci Technol 59:793

    Article  CAS  Google Scholar 

  22. Karlin S, Colomban P (1998) Composites 29B:41

    CAS  Google Scholar 

  23. Ma Y, Wang S, Chen ZH (2010) Ceram Int 36:2455

    Article  CAS  Google Scholar 

  24. Karlin S, Colomban P (1997) J Raman Spectrosc 28:219

    Article  CAS  Google Scholar 

  25. Cordelair J, Greil P (2000) J Eur Ceram Soc 20:1947

    Article  CAS  Google Scholar 

  26. Wang DY, Mao XH, Song YC, Wang YD (2010) Sci China E 53:1038

    Article  CAS  Google Scholar 

  27. Shimoo T, Katase Y, Okamura K (2004) J Mater Sci 39:6243. doi:10.1023/B:JMSC.0000043593.01160.da

    Article  CAS  Google Scholar 

  28. Young JL, Doo JC, Park JY, Hong GW (2000) J Mater Sci 35:4519. doi:10.1023/A:1004808418609

    Article  Google Scholar 

  29. Chollon G, Pailler R, Canet R, Delhhaes P (1998) J Eur Ceram Soc 18:725

    Article  CAS  Google Scholar 

  30. Scholz R, dos Santos Marques F, Riccardi B (2002) J Nucl Mater 307–311:1098

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the fund of the State Key Laboratory of Solidification processing in NWPU, No. KP200901.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donghai Ding.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, D., Zhou, W., Zhang, B. et al. Complex permittivity and microwave absorbing properties of SiC fiber woven fabrics. J Mater Sci 46, 2709–2714 (2011). https://doi.org/10.1007/s10853-010-5140-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-5140-x

Keywords

Navigation