Skip to main content
Log in

Phase formation and dielectric properties of Ba0.5Sr0.5TiO3 by slow injection sol–gel technique

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A simple sol–gel process incorporating slow precursor injection technique was employed to synthesize homogeneous Ba0.5Sr0.5TiO3 nano powders. The Ba0.5Sr0.5TiO3 samples were subjected to calcination temperatures from 600 to 1,100 °C and sintering temperatures from 1,250 to 1,350 °C for the study of phase formation, crystallite size, particle distribution, and dielectric properties. Single phase Ba0.5Sr0.5TiO3 with a cubic perovskite structure was successfully synthesized after calcination at 800 °C. The average size of the nano particles is 42 nm with a narrow size distribution, and a standard deviation of 10%. The highest values recorded within the investigated range for dielectric constant, and dielectric loss measured at 1 kHz are 1,164 and 0.063, respectively, for Ba0.5Sr0.5TiO3 pellets calcined at 800 °C and sintered at 1,350 °C. Leakage current density measured at 5 V for the Ba0.5Sr0.5TiO3 pellet was found to be 49.4 pA/cm2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tahan DM, Safari A, Klein LC (1996) J Am Ceram Soc 79:1593

    Article  CAS  Google Scholar 

  2. Parker LH, Tasch AF (1990) IEEE Circuits Devices Mag 6:17

    Article  Google Scholar 

  3. Ming-Chieh C, Chun-Feng C, Wen-Tang W, Fuh-Sheng S (2005) J Electrochem Soc 152:F66

    Article  Google Scholar 

  4. Zhang R-B, Yang C-S, Ding G-P (2005) Mater Lett 59:1741

    Article  CAS  Google Scholar 

  5. Auciello O, Saha S, Kaufman DY, Streiffer SK, Fan W, Kabius B, Im J, Baumann P (2004) J Electroceram 12:119

    Article  CAS  Google Scholar 

  6. Miao J, Chen W-R, Chen B, Yang H, Peng W, Zhong J-P, Wu H, Yuan J, Xu B, Qiu X-G, Cao L-X, Zhao B-R (2004) Chin Phys Lett 21:1139

    Google Scholar 

  7. Zhu X, Zheng D, Peng W, Miao J, Li J (2004) J Cryst Growth 268:192

    Article  CAS  Google Scholar 

  8. Hochul K, Sungho P, Kyekyoon K, Man YS, Hyungsoo C (2004) Electrochem Solid-State Lett 7:F77

    Article  Google Scholar 

  9. Chiu MC, Wang CC, Yao HC, Shieu FS (2005) Mater Chem Phys 94:141

    Article  CAS  Google Scholar 

  10. Xia Y, Wu D, Liu Z (2004) J Phys D 37:2256

  11. Morito K, Suzuki T, Kishi H, Sakaguchi I, Ohashi N, Haneda H (2007) IEEE Trans Ultrason Ferroelectr Freq Control 54:2567

    Article  Google Scholar 

  12. Roy SC, Sharma GL, Bhatnagar MC, Manchanda R, Balakrishnan VR, Samanta SB (2004) Appl Surf Sci 236:306

    Article  CAS  Google Scholar 

  13. Lee JM, Kang SY, Shin JC, Kim WJ, Hwang CS, Kim HJ (1999) Appl Phys Lett 74:3489

    Article  CAS  Google Scholar 

  14. Cheol Seong H, Byoung Taek L, Chang Seok K, Jin Won K, Ki Hoon L, Hag-Ju C, Hideki H, Wan Don K, Sang In L, Young Bum R, Moon Yong L (1998) J Appl Phys 83:3703

    Article  Google Scholar 

  15. Yang X, Yao X, Zhang L (2004) Ceram Int 30:1525

    Article  CAS  Google Scholar 

  16. Su B, Holmes JE, Cheng BL, Button TW (2002) J Electroceram 9:111

    Article  CAS  Google Scholar 

  17. Berbecaru C, Alexandru HV, Porosnicu C, Velea A, Ioachim A, Nedelcu L, Toacsan M (2008) Thin Solid Films 516:8210

    Article  CAS  Google Scholar 

  18. Fang T-T, Lin H-B, Hwang J-B (1990) J Am Ceram Soc 73:3363

    Article  CAS  Google Scholar 

  19. Packia Selvam I, Kumar V (2002) Mater Lett 56:1089

    Article  CAS  Google Scholar 

  20. Bonnie MMLRER, Gersten L (2004) J Am Ceram Soc 87:2025

    Google Scholar 

  21. Reveron H, Elissalde C, Aymonier C, Bousquet C, Maglione M, Cansell F (2006) Nanotechnology 17:3527

    Article  CAS  Google Scholar 

  22. Xu H, Karadibhave S, Slamovich EB (2007) J Am Ceram Soc 90:2352

    Article  CAS  Google Scholar 

  23. Wei X, Xu G, Ren Z, Wang Y, Shen G, Han G (2008) J Cryst Growth 310:4132

    Article  CAS  Google Scholar 

  24. Hou B, Xu Y, Wu D, Sun Y (2006) Powder Technol 170:26

    Article  CAS  Google Scholar 

  25. Nazeri A, Kahn M, Kidd T (1995) Mater Sci Lett 14:1085

    Article  CAS  Google Scholar 

  26. Lahiry S, Gupta V, Sreenivas K, Mansingh A (2000) IEEE Trans Ultrason Ferroelectr Freq Control 47:854

    Article  CAS  Google Scholar 

  27. Majumder SB, Jain M, Martinez A, Katiyar RS, Keuls FWV, Miranda FA (2001) J Appl Phys 90:896

    Article  CAS  Google Scholar 

  28. Somani V, Kalita S (2007) J Electroceram 18:57

    Article  CAS  Google Scholar 

  29. Jia QX, Wu XD, Foltyn SR, Tiwari P (1995) Appl Phys Lett 66:2197

    Article  CAS  Google Scholar 

  30. Fu C, Yang C, Chen H, Wang Y, Hu L (2005) Mater Sci Eng B 119:185

    Article  Google Scholar 

  31. Reisinger H, Stengl R (2000) In: Proceedings of the 2000 third IEEE international Caracas conference D26/1

  32. Shen C, Liu Q-F, Liu Q (2004) Mater Lett 58:2302

    Article  CAS  Google Scholar 

  33. Lu Q, Chen D, Jiao X (2003) J Alloys Compd 358:76

    Article  CAS  Google Scholar 

  34. Li M-l, Liang H, Xu M-X (2008) Mater Chem Phys 112:337

    Article  CAS  Google Scholar 

  35. Wang YK, Tseng TY, Lin P (2002) Appl Phys Lett 80:3790

    Article  CAS  Google Scholar 

  36. Li J et al (2005) Model Simul Mater Sci Eng 13:699

    Article  CAS  Google Scholar 

  37. Dietz GW, Schumacher M, Waser R, Streiffer SK, Basceri C, Kingon AI (1997) J Appl Phys 82:2359

    Article  CAS  Google Scholar 

  38. Tsai MS, Tseng TY (1999) J Phys D 32:2141

    Google Scholar 

  39. Vollmann M, Hagenbeck R, Waser R (1997) J Am Ceram Soc 80:2301

    Article  CAS  Google Scholar 

  40. Tian H-Y, Choi J, No K, Luo W-G, Ding A-L (2003) Mater Chem Phys 78:138

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Ministry of Science, Technology and Innovation (MOSTI), Malaysia for supporting this study under eScience Fund (Project No. 03-02-01-SF0059) as well as Ms Zaidina Bt Mohd Daud, Mr Sharul Ami b. Zainal Abidin and Mr Kenny Gan Chye Siong for their assistance with the characterizations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Balachandran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balachandran, R., Yow, H.K., Ong, B.H. et al. Phase formation and dielectric properties of Ba0.5Sr0.5TiO3 by slow injection sol–gel technique. J Mater Sci 46, 1806–1813 (2011). https://doi.org/10.1007/s10853-010-5004-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-5004-4

Keywords

Navigation