Skip to main content

Advertisement

Log in

Influence of solution rate and substrate temperature on the properties of lead iodide films deposited by spray pyrolysis

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Polycrystalline lead iodide (PbI2) thin films have been deposited by spray pyrolysis method using N,N-dimethylformamide (DMF) as solvent as a function of several deposition parameters. DMF is used as an alternative to water due to the larger solubility limit of PbI2 in this solvent. In this work, the solution rate during the deposition time of 3 h was varied in the range of 0.11 cm3/min up to 0.30 cm3/min. A growth rate varying from 19 Å s−1 up to 47 Å s−1 was obtained as a function of solution rate. Dark current as a function of temperature for the final films reveals that for larger solution rates smaller values of electrical resistivity is obtained. For a solution rate of 0.30 cm3/min, an electrical transport activation energy (E a) of about 0.65 eV was measured for the whole temperature range. On the other hand, for the sample deposited with a solution rate of 0.11 cm3/min, two main transport mechanisms can be observed with an activation energy of about 1.23 eV for temperatures above 50 °C. The effect of substrate temperature is also discussed. Samples were deposited in the temperature range of 170 °C up to 250 °C with a fixed solution rate of 0.16 cm3/min. In addition, the films were exposed to X-ray irradiation in the mammography diagnosis region, using a molybdenum (Mo) anode and a peak tube potential between 26 and 36 kV (equivalent photon energies between 10 keV and 15 keV).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Street RA, Ready SE, Schuylenbergh KV, Ho J, Boyce JB, Nylen P, Shah K, Melekhov L, Hermon H (2002) J Appl Phys 91:3345

    Article  CAS  Google Scholar 

  2. Condeles JF, Ghilardi Netto T, Mulato M (2007) Nucl Instrum Methods A 577:724

    Article  CAS  Google Scholar 

  3. Kasap SO, Rowlands JA (2002) IEE Proc Circuits Devices Syst 149(2):85

    Article  Google Scholar 

  4. Bennett PR, Shah KS, Dmitriev Y, Klugerman M, Gupta T, Squillante M, Street R, Partain L, Zentai G, Pavyluchova R (2003) Nucl Instrum Methods A 505:269

    Article  CAS  Google Scholar 

  5. Lemmi F, Mulato M, Ho J, Lao R, Lu JP, Street RA, Palma F (2001) Appl Phys Lett 78(10):1334

    Article  CAS  Google Scholar 

  6. Shah KS, Street RA, Dmitriyev Y, Bennett P, Cirignano L, Klugerman M, Squillante MR, Entine G (2001) Nucl Instrum Methods A 458:140

    Article  CAS  Google Scholar 

  7. Condeles JF, Lofrano RCZ, Rosolen JM, Mulato M (2006) Braz J Phys 36(2A):320

    Article  CAS  Google Scholar 

  8. Ahuja R, Arwin H, Ferreira da Silva A, Persson C, Osório-Guillén JM, Souza de Almeida J, Moyses Araujo C, Veje E, Veissid N, An CY, Pepe I, Johansson B (2002) J Appl Phys 92:7219

    Article  CAS  Google Scholar 

  9. Schieber M, Hermon H, Zuck A, Vilensky A, Melekhov L, Shatunovsky R, Meerson E, Saado Y, Lukach M, Pinkhasy E, Ready SE, Street RA (2001) J Cryst Growth 225:118

    Article  CAS  Google Scholar 

  10. Dmitriev Y, Bennett PR, Cirignano LJ, Klugerman M, Shah KS (2008) Nucl Instrum Method A 584:165

    Article  CAS  Google Scholar 

  11. Schieber M, Zamoshchik N, Khakhan O, Zuck A (2008) J Cryst Growth 310:3168

    Article  CAS  Google Scholar 

  12. Fornaro L, Saucedo E, Mussio L, Gancharov A (2002) IEEE Trans Nucl Sci 49:2274

    Article  CAS  Google Scholar 

  13. Ponpon JP, Amann M (2001) Thin Solid Films 394:277

    Article  CAS  Google Scholar 

  14. Condeles JF, Martins TM, Dos Santos TC, Brunello CA, Rosolen JM, Mulato M (2004) J Non-Cryst Solids 338–340:81

    Article  Google Scholar 

  15. McGregor DS, Hermon H (1997) Nucl Instrum Methods A 395:101

    Article  CAS  Google Scholar 

  16. Hayashi T, Kinpara M, Wang JF, Mimura K, Isshiki M (2008) Cryst Res Technol 43(1):9

    Article  CAS  Google Scholar 

  17. He Y, Zhu S, Zhao B, Jin Y, He Z, Chen B (2007) J Cryst Growth 300:448

    Article  CAS  Google Scholar 

  18. Condeles JF, Ando RA, Mulato M (2008) J Mater Sci 43:525. doi:10.1007/s10853-007-1854-9

    Article  CAS  Google Scholar 

  19. Unagami TJ (1999) Electrochem Soc 146:3110

    Article  CAS  Google Scholar 

  20. Perednis D, Gauckler LJ (2005) J Electroceram 14:103

    Article  CAS  Google Scholar 

  21. Siefert W (1984) Thin Solid Films 120(4):267

    Article  CAS  Google Scholar 

  22. Yu HF, Liao WH (1998) Int J Heat Mass Transf 41(8–9):993

    CAS  Google Scholar 

  23. Ul Islam AKMF, Islam R, Khan KA (2005) Renew Energy 30:2289

    Article  Google Scholar 

  24. Fornaro L, Saucedo E, Mussio L, Yerman L, Ma X, Burger A (2001) Nucl Instrum Methods A 458:406

    Article  CAS  Google Scholar 

  25. Li HY, Zhang H, Li ZS, Li DM, He DY (2005) J Inorg Mater 20(5):1239

    CAS  Google Scholar 

  26. Matuchova M, Zdansky K, Svatuska M, Zavadil J, Prochazkova O (2007) Chem Pap 61(1):36

    Article  CAS  Google Scholar 

  27. Oliveira IB, Costa FE, Armelin MJ, Cardoso LP, Hamada MM (2002) IEEE Trans Nucl Sci 49(4):1968

    Article  CAS  Google Scholar 

  28. Matuchova M, Zdansky K, Zavadil J, Maixner J, Alexiev D, Prochazkova D (2006) Mater Sci Semicond Process 9:394

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank T. Ghilardi Netto for experimental help. This work has been supported by FAPESP, CAPES and CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mulato.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Condeles, J.F., Mulato, M. Influence of solution rate and substrate temperature on the properties of lead iodide films deposited by spray pyrolysis. J Mater Sci 46, 1462–1468 (2011). https://doi.org/10.1007/s10853-010-4947-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4947-9

Keywords

Navigation