Skip to main content
Log in

Effect of inversion on thermoelastic and thermal transport properties of MgAl2O4 spinel by atomistic simulation

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

MgAl2O4 is commonly found in the normal spinel structure with the Mg2+ ions located in tetrahedral sites and the Al3+ ions occupying octahedral sites. We use atomic-level simulation to characterize the effect of inversion on the elastic and thermal properties. Cation ordering and volumetric changes tend to affect the structure and properties in opposite ways, thereby compensating each other up for up to 50% inversion. For higher inversions, volumetric effects dominate. In the case of the thermal conductivity, the effects of changes in the elastic properties and thermal expansion essentially cancel over the entire range of inversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Glasso FS (1970) Structure and properties of inorganic solids. Pergamon, New York

    Google Scholar 

  2. Ueda N et al (1992) Appl Phys Lett 61:1954

    Article  CAS  Google Scholar 

  3. Gupta RP (2006) J Nucl Mater 358:35

    Article  CAS  Google Scholar 

  4. Matzke H et al (1999) J Nucl Mater 274:47

    Article  CAS  Google Scholar 

  5. Wiss T, Matzke H (1999) Radiat Meas 31:507

    Article  CAS  Google Scholar 

  6. Buckley SN (1986) J Nucl Mater 141:387

    Article  Google Scholar 

  7. Buckley SN, Shaibani SJ (1987) Philos Mag Lett 55:15

    Article  CAS  Google Scholar 

  8. Sickafus KE et al (1995) J Nucl Mater 219:128

    Article  CAS  Google Scholar 

  9. Bordes N et al (1995) J Nucl Mater 225:318

    Article  CAS  Google Scholar 

  10. Ball JA et al (2005) J Phys Condens Matter 17:7621

    Article  CAS  Google Scholar 

  11. Sickafus KE et al (1999) J Am Ceram Soc 82:3279

    Article  CAS  Google Scholar 

  12. Andreozzi GB et al (2000) Am Mineral 85:1164

    CAS  Google Scholar 

  13. Schmocker U et al (1972) Phys Lett A 40:237

    Article  CAS  Google Scholar 

  14. Schmocker U, Waldner F (1976) J Phys Condens Matter 9:L235

    CAS  Google Scholar 

  15. Goodenough JB, Loeb AL (1955) Phys Rev 98:391

    Article  CAS  Google Scholar 

  16. Suzuki I et al (2000) Am Mineral 85:304

    CAS  Google Scholar 

  17. Suzuki I, Kumazawa M (1980) Phys Chem Miner 5:279

    CAS  Google Scholar 

  18. Seko A et al (2006) Phys Rev B 73:184117

    Article  Google Scholar 

  19. Lavrentiev MY et al (2003) Am Mineral 88:1522

    CAS  Google Scholar 

  20. Thibaudeau P et al (2006) Phys Rev B 73:064305

    Article  Google Scholar 

  21. Li L et al (2007) Am Mineral 92:174

    Article  CAS  Google Scholar 

  22. Burghartz S, Schulz B (1994) J Nucl Mater 215:1065

    Article  Google Scholar 

  23. Catlow CRA et al (1977) J Phys Condens Matter 10:1395

    CAS  Google Scholar 

  24. Schelling PK et al (2002) Phys Rev B 65:144306

    Article  Google Scholar 

  25. Chang ZP, Barsch GR (1973) J Geophys Res 78:2418

    Article  CAS  Google Scholar 

  26. Cynn H et al (1993) Pure Appl Geophys 141:415

    Article  Google Scholar 

  27. Yoneda A (1990) J Phys Earth 38:19

    Google Scholar 

  28. Chartier A et al (2008) J Nucl Mater 378:188

    Article  CAS  Google Scholar 

  29. Gale JD, Rohl AL (2003) Mol Simul 29:291

    Article  CAS  Google Scholar 

  30. Gale JD (1997) J Chem Soc Faraday Trans 93:629

    Article  CAS  Google Scholar 

  31. Schelling PK, Phillpot SR (2001) J Am Ceram Soc 84:2997

    Article  CAS  Google Scholar 

  32. Hazen RM, Yang HX (1997) Science 277:1965

    Article  CAS  Google Scholar 

  33. Watanabe T et al (2009) J Am Ceram Soc 92:850

    Article  CAS  Google Scholar 

  34. Leibfried G, Schloemann E (1954) Akad Wiss Goettingen Math-Physik 4:71

    Google Scholar 

  35. Raghavan S et al (1998) Scr Mater 39:1119

    Article  CAS  Google Scholar 

  36. Bisson JF et al (2000) J Am Ceram Soc 83:1993

    Article  CAS  Google Scholar 

  37. Leclercq B et al (2003) Mat-wiss Werkstofftech 34:406

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are happy to acknowledge the University of Florida High-Performance Computing Center for providing computational resources and support that have contributed significantly to the research results reported in this article. This work was funded by DOE-NERI Award DE-FC07-05ID14647 and by a Materials World Network Project, NSF DMR-0710523.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. R. Phillpot.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shukla, P., Chernatynskiy, A., Nino, J.C. et al. Effect of inversion on thermoelastic and thermal transport properties of MgAl2O4 spinel by atomistic simulation. J Mater Sci 46, 55–62 (2011). https://doi.org/10.1007/s10853-010-4795-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4795-7

Keywords

Navigation