Skip to main content
Log in

Microstructure and upconversion luminescence of Yb3+ and Ho3+ co-doped BST thick films

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Ba0.8Sr0.2TiO3 (BST) thick films co-doped with Yb3+ and Ho3+ were fabricated by the screen printing techniques on alumina substrates. The structure and morphology of the BST thick films were studied by XRD and SEM, respectively. After sintered at 1240 °C for 100 min the BST thick films are polycrystalline with a perovskite structure. The upconversion luminescence properties of the RE-doped BST thick films under 800 nm excitation at room temperature were investigated. The upconversion emission bands centered at 470 and 534 nm corresponding to 5F1 → 5I8 and 5F4 → 5I8 transition, respectively were observed, and the upconversion mechanisms were discussed. The dependence of the upconversion emission intensity upon the Ho3+ ions concentration was also examined; the emission intensity reaches a maximum value in the sample with 2 mol% Yb3+ and 0.250 mol% Ho3+ ions. All the results show that the BST thick films co-doped with Yb3+ and Ho3+ may have potential use for photoelectric devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Vossler GL, Brooks CL, Winik KA (1995) Electron Lett 31:11629

    Article  Google Scholar 

  2. Whitley TH, Millar CA, Wyatt R, Brierley MC, Szebesta D (1991) Electron Lett 27:1785

    Article  ADS  Google Scholar 

  3. Roman JE, Camy P, Hempstead M, Brocklesby WS, Nouth S, Beguin A, Lerminiaux C, Wilkinson JS (1995) Electron Lett 31:1345

    Article  CAS  Google Scholar 

  4. Pollack A, Chang DB (1988) J Appl Phys 64:2885

    Article  CAS  ADS  Google Scholar 

  5. Kaminskii AA (1996) Crystalline lasers: physical processes and operating schemes. CRC Press, New York

    Google Scholar 

  6. Gudel HU, Pollnau M (2000) J Alloys Comp 303–304:307

    Article  Google Scholar 

  7. Bowman SR, Shaw LB, Feldman BJ, Ganem J (1996) IEEE J Quantum Electron 32:646

    Article  CAS  ADS  Google Scholar 

  8. Page RH, Schaffers KI, Payne SA, Krupke WF (1997) J Lightwave Technol 15:787

    Article  ADS  Google Scholar 

  9. Basiev TT, Orlovskii YuV, Galagan BI, Doroshenko ME, Vorob’ev IN, Dmitruk LN, Papashvili AG, Skvortsov VN, Konyushkin VA, Pukhov KK, Ermakov GA, Osiko VV, Prokhorov AM, Smith S (2002) Laser Phys 12:859

    CAS  Google Scholar 

  10. Garcia-Adeva AJ, Balda R, Fernandez J, Nyein EiEi, Hommerich U (2005) Phys Rev B 72:165116

    Article  ADS  Google Scholar 

  11. Zhang HX, Kam CH, Zhou Y, Han XQ, Buddhudu S, Xiang Q, Lam YL, Chan YC (2000) Appl Phys Lett 77:5

    Google Scholar 

  12. Solarz P, Sokoska I, Ryba-Romanowski W (2002) J Mol Struct 614:325

    Article  CAS  ADS  Google Scholar 

  13. Suyver JF, Kik PG, Kimura T, Polman A, Franzo G, Coffa S (1999) Nucl Instrum Methods Phys Res B 148:497

    Article  CAS  ADS  Google Scholar 

  14. Terasako T, Hashimoto K, Nomoto Y, Shirakata S, Isomura S, Niwa E, Masumoto K (2000) J Lumin 87(/89):1056

    Article  Google Scholar 

  15. Lee YC, Shu HT, Shen JL, Liao KF, Uen WY (2001) Solid State Commun 120:501

    Article  CAS  ADS  Google Scholar 

  16. Zaldo C, Martin MJ, Sole R, Aguilo M, Diaz F, Roura P, de Miguel MLopez (1998) Opt Mater 10:29

    Article  CAS  Google Scholar 

  17. Karmakar B (2005) J Solid State Chem 178:2663

    Article  CAS  ADS  Google Scholar 

  18. Zhang Tj, Wang J, Jiang J, Pan Rk, Zhang Bsh (2007) Thin Solid Films 515:7721

    Article  CAS  ADS  Google Scholar 

  19. Zhang J, Zhai J, Chou X, Yao X (2008) Mater Chem Phys 111:409

    Article  CAS  Google Scholar 

  20. Wu HK, Barnes FS (1998) Integr Ferroelectr 22:291

    Article  CAS  Google Scholar 

  21. Liu FS, Liu QL, Liang JK, Luo J, Yang LT, Song GB, Zhang Y, Wang LX, Yao JN, Rao GH (2005) J Lumin 111:61

    Article  CAS  Google Scholar 

  22. Chen X, Song Z, Sawanobori N, Ohtsuka M, Li X, Wang Y, Xu X, He C, Ma H, Chen Y, Zhu J (2008) Phys B 403:3847

    Article  CAS  ADS  Google Scholar 

  23. Kuo S-Y, Chen C-S, Tseng T-Y, Chang S-C, Hsieh W-F (2002) J Appl Phys 92:4

    Article  Google Scholar 

  24. Balda R, Garcia-Adeva AJ, Voda IM, Fernandez J (2004) Phys Rev B 69:205203

    Article  ADS  Google Scholar 

  25. Auzel F (2004) Chem Rev 104(1):139

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work has been supported by the National Natural Science Foundation of China through No. 50972040, and Ceramics Ministry-Province Jointly-Constructed Cultivation Base for State Key Laboratory through No. G0701.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianjin Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, T., Yu, L., Wang, J. et al. Microstructure and upconversion luminescence of Yb3+ and Ho3+ co-doped BST thick films. J Mater Sci 45, 6819–6823 (2010). https://doi.org/10.1007/s10853-010-4781-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4781-0

Keywords

Navigation