Skip to main content
Log in

Calculation and experimental determinations of the residual stress distribution in alumina/Ni/alumina and alumina/Ni/nickel alloy systems

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Residual stress problems encountered in joining ceramics–ceramics or ceramics–metals systems for high-temperature applications >1000 °C have been studied. A solid-state bonding technique under hot-pressing via metallic foils sheet of Ni was used for joining alumina–alumina and alumina–nickel alloy (HAYNES® 214™). The residual stresses expected in the specimen were predicted by finite-element method (FEM) calculations using an elastic–plastic-creep model (EPC). Stress distributions in the specimen were characterized experimentally using X-ray diffraction (XRD) and Vickers Indentation Fracture (VIF) techniques. The tensile and shear stress profiles have been determined along selected lines perpendicular to the bonding interface. The results of the FEM calculation of residual stresses have been compared experimentally with the results of classical XRD and indentation methods. It was found that the tensile stress concentration showed higher values at the edge of the boundary. The residual stresses caused by the thermal expansion mismatch between alumina (Al2O3) and Ni-based super-alloy (HAYNES® 214™) severely deteriorated the joints compared to Al2O3–Al2O3 joint with the same solid-state bonding parameters. The correlations between the FEM calculations and experimental results obtained by XRD and VIF method were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Larson DS, Adams JW, Johnson LR, Teotia APS, Hill LG (1985) Ceramic materials for advanced heat engines. Noyes, Park Ridge, NJ

    Google Scholar 

  2. Lino Y (1990) J Mater Sci Lett 10:104

    Google Scholar 

  3. Nicholas MG (1990) Joining of ceramics. Chapman & Hall, London

    Google Scholar 

  4. Das S, Tiwari AN, Kulkarni AR (2004) J Mater Sci 39:3355. doi:10.1023/B:JMSC.0000026935.18466.4b

    Article  ADS  Google Scholar 

  5. Lourdin P, Juvé D, Tréheux D (1996) J Eur Ceram Soc 16(7):745

    Article  CAS  Google Scholar 

  6. Serier B, Tréheux D (1993) Acta Metall Mater 41(12):369

    CAS  Google Scholar 

  7. Kara-Slimane A, Mbongo B, Tréheux D (1999) J Adhesion Sci Technol 13:35

    Article  CAS  Google Scholar 

  8. Esposito L, Bellosi A, Guicciardi S, De portu G (1998) J Mater Sci 33:1827. doi:10.1023/A:1004397019927

    Article  CAS  ADS  Google Scholar 

  9. Evans A, Dalgleish B, Hutchinson J (1989) Acta Metall 37:3249

    Article  CAS  Google Scholar 

  10. Hsueh C, Evans A (1999) J Eur Ceram Soc 13(1):35–48

    Google Scholar 

  11. Zhang JX, Chandel YZ, Seow HP (2002) J Mater Proc Tech 122:220

    Article  CAS  Google Scholar 

  12. Cao H, Evans A (1989) Mech Mater 7:295–304

    Article  Google Scholar 

  13. Dalgleish B, Trumble K, Evans A (1989) Acta Metall 37(7):1923–1991

    Article  CAS  Google Scholar 

  14. Drory M, Evans A (1990) J Am Ceram Soc 73:634

    Article  CAS  Google Scholar 

  15. Lee SB, Kim JH (1997) J Mater Process Technol 67:167

    Article  Google Scholar 

  16. Kurita M, Sato M, Ihara I (1977) J Am Ceram Soc 86:60

    Google Scholar 

  17. Nemoto Y, Ueda K, Satou M, Hasegawa A, Abe K (1998) J Nucl Mater 163:1517

    Article  Google Scholar 

  18. Colin C (1991) Détermination des contraintes résiduelles dans les assemblages alumine/Inconnel 600, Thèse de l’Ecole des mines de Paris

  19. Martinelli AE, Drew RAL, Fancello EA, Rogge R, Root JH (1999) J Am Ceram Soc 82:1787

    Article  CAS  Google Scholar 

  20. Rabin BH (1998) J Am Ceram Soc 81:1541

    CAS  Google Scholar 

  21. Tréheux D, Fayeulle S, Guipont V, Jacquemin JP (1998) In: Bellosi A et al (eds) Interfacial science in ceramic joining. Kluwer Academic Publishers, New York, p 311–318

  22. Lascar G (1998) J Phys IV 4:115

    MathSciNet  Google Scholar 

  23. Iancu OT, Munz D, Eienmann B, Scholtes B, Macherauch E (1990) J Am Ceram Soc 73(5):1144–1149

    Google Scholar 

  24. Travessa DN, Ferrante M, Den Ouden G (2000) Mater Sci Technol 16:687

    CAS  Google Scholar 

  25. ABAQUS Software (2006) User’s manual, version 6.6. Karlsson and Sorensen Inc, Hibbitt

  26. Nakamura T (1991) ASME J Appl Mech 58:939

    Article  Google Scholar 

  27. Hattali ML, Valette S, Ropital F, Mesrati N, Tréheux D (2009) J Mater Sci 44:3198. doi:10.1007/s10853-009-3426-7

    Article  CAS  ADS  Google Scholar 

  28. Liang KM, Orange G, Fantozzi G (1990) J Mater Sci 25:207. doi:10.1007/BF00544209

    Article  CAS  ADS  Google Scholar 

  29. Lawn BR, Fuller ER Jr (1984) J Mater Sci 19:4061. doi:10.1007/BF00980772

    Article  ADS  Google Scholar 

  30. Maeder G (1989) Chem Scrip 26A:23–31

    Google Scholar 

  31. ASTM Book of standards Volume: 03.01,CS03. A standard method for verifying the alignement of X-ray diffraction instrumentation for residual stress measurement. ASTM International, West Conshohocken, PA (2002)

  32. ASTM Book of standards Volume: 03.01. A standard test method for determining the effective elastic parameter for X-ray diffraction measurements of residual stress. ASTM International, West Conshohocken, PA (2009)

  33. Hattali L (2009) Carcatérisation et modélisation Thermo-mécaniques des assemblages métal-céramique élaborés par thermocompression, Thèse Ecole Centrale de Lyon N 2009-02

  34. Noyan IC, Cohen JB (1987) Residual stress, measurement by diffraction and interpretation, Materials Research Engineering. Springer-Verlag, New York

    Google Scholar 

  35. Hattali ML, Valette S, Ropital F, Mesrati N, Tréheux D (2009) IOP Conf Series Mater Sci Eng 5:012011. doi:10.1088/1757-899X/5/1/012011

  36. Hockey BJ (1971) J Am Ceram Soc 54(5):223

    Article  CAS  Google Scholar 

  37. Quinn GD, Bradt RC (2007) On the Vickers indentation fracture toughness test. J Am Ceram Soc 90(3):673

    Article  CAS  Google Scholar 

  38. Simpson LA, Ritchie IG, Lloyd DJ (1975) J Am Ceram Soc 58(11–12):537

    Article  CAS  Google Scholar 

  39. Noone MJ, Mehan RL (1973) In: Bradt RC, Hasselman DPH, Lange FF (eds) Fracture mechanics of ceramics, vol 1, Plenum, New York

  40. Marshall DB, Lawn BR (1977) J Am Ceram Soc 86(1):60

    Google Scholar 

  41. Simpson LA (1973) J Am Ceram Soc 56:7–11

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Hattali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hattali, M.L., Valette, S., Ropital, F. et al. Calculation and experimental determinations of the residual stress distribution in alumina/Ni/alumina and alumina/Ni/nickel alloy systems. J Mater Sci 45, 4133–4140 (2010). https://doi.org/10.1007/s10853-010-4502-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4502-8

Keywords

Navigation