Skip to main content
Log in

The effect of heat treatments on the creep–rupture properties of a wrought Ni–Cr heat-resistant alloy at 973 K

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The effect of heat treatments on the creep–rupture properties was investigated on a wrought Ni–Cr heat-resistant alloy at 973 K. Short-time aging (aging for 3.6 ks (1 h) at 973 K) was made on the solution-treated specimens with different grain sizes. The fine-grained specimen (the grain diameter, d = 45.2 μm) produced by short-time solution treatment exhibited almost the same rupture life and superior creep ductility as those of the medium-grained specimen (d = 108 μm) produced by normal solution treatment. The fine-grained specimen and medium-grained specimen showed the longer rupture life compared with the specimen with recommended aging. The principal strengthening of specimens was attributed to the precipitation hardening by γ′ phase particles. The fine-grained specimen had the highest hardness, and the increase of the hardness was observed in both the fine-grained and the medium-grained specimens during creep at 973 K. However, coarse-grained specimen (d = 286 μm) with high-temperature long-time solution treatment exhibited significantly short rupture life owing to insufficient precipitation hardening after the short-time aging and during creep. Ductile intergranular fracture with dimples occurred in the fine-grained specimen, while brittle intergranular fracture was observed in the medium-grained specimen and in the specimen with recommended aging. Both transgranular fracture and brittle intergranular fracture were observed in the coarse-grained specimen. A simple heat treatment composed of short-time solution treatment and short-time aging is applicable to high-temperature components of wrought Ni–Cr alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Donachie M, Donachie S (2002) Superalloys, 2nd edn. ASM International, Materials Park, Ohio

    Google Scholar 

  2. Wisniewski A, Beddoes J (2009) Mater Sci Eng A 510–511:266

    Google Scholar 

  3. Raymond EL (1967) Trans Metall Soc AIME 239(9):1415

    CAS  Google Scholar 

  4. Venkiteswaran PK, Taplin DMR (1974) Met Sci 8(1):97

    Google Scholar 

  5. Arbel A, Pande CS (1988) J Mater Sci 23(9):3375. doi:10.1007/BF00551321

    Article  CAS  ADS  Google Scholar 

  6. Jahazi M, Mashreghi AR (2002) Mater Sci Technol 18(4):458

    Article  CAS  Google Scholar 

  7. Sims CT, Hagel WC (1972) The superalloys. Wiley, New York

    Google Scholar 

  8. Sims CT, Stoloff NS, Hagel WC (1987) Superalloys II. Wiley, New York

    Google Scholar 

  9. Garofalo F, Domis W, von Gemmingen F (1964) Trans Met Soc AIME 230(10):1460

    CAS  Google Scholar 

  10. Tanaka M, Kato R, Ito Y, Kayama A (2000) Z Metallkd 91(5):429

    CAS  Google Scholar 

  11. Lagneborg RJ (1969) J Iron Steel Inst 207(11):1503

    CAS  Google Scholar 

  12. Barrett CR, Lytton JL, Sherby OD (1967) Trans Met Soc AIME 239(1):170

    CAS  Google Scholar 

  13. Evans HE (1984) Mechanisms of creep fracture. Elsevier Applied Science Publishers, London

    Google Scholar 

  14. McElroy RJ, Szkopiak ZC (1972) Int Metall Rev 17:175

    CAS  Google Scholar 

  15. McQueen HJ (1977) Metall Trans A 8A(6):807

    CAS  ADS  Google Scholar 

  16. Hausselt JH, Nix WD (1977) Acta Metall 25(6):595

    Article  CAS  Google Scholar 

  17. Tanaka K, Mori T, Nakamura T (1970) Philos Mag 21(170):267

    Article  ADS  Google Scholar 

  18. Langdon TG, Vastava RB (1982) ASTM STP 765. ASTM, Philadelphia, p 435

  19. Tanaka M, Iizuka H (1985) J Mater Sci 20(10):3750. doi:10.1007/BF01113784

    Article  ADS  Google Scholar 

  20. Iizuka H, Tanaka M (1986) J Mater Sci 21(2):611. doi:10.1007/BF01145531

    Article  ADS  Google Scholar 

  21. Koul AK, Gessinger GH (1983) Acta Metall 31(7):1061

    Article  CAS  Google Scholar 

  22. Iizuka H, Tanaka M (1986) J Mater Sci 21(8):2803. doi:10.1007/BF00551493

    Article  CAS  ADS  Google Scholar 

  23. Tanaka M, Miyagawa O, Sakaki T, Iizuka H, Ashihara F, Fujishiro D (1988) J Mater Sci 23(2):621. doi:10.1007/BF01174696

    Article  CAS  ADS  Google Scholar 

  24. Hong HU, Nam SW (2002) Mater Sci Eng A 332:255

    Article  Google Scholar 

  25. Kotval PS, Venables JD, Calder RW (1972) Metall Trans 3(2):453

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. D. Fujishiro, Former Director of Nittan Valve Company, for supplying Ni–Cr alloy used in this study. They also thank Prof. Z. Nakagawa and Mr. K. Sasaki of Center for Geo-Environmental Science, Akita University for chemical analysis by SEM-EDS, and Mr. T. Moronaga of Electronics Division of Kobelco Research Institute Inc. for microstructural and chemical analyses using TEM-EDS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manabu Tanaka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanaka, M., Kato, R. The effect of heat treatments on the creep–rupture properties of a wrought Ni–Cr heat-resistant alloy at 973 K. J Mater Sci 45, 4029–4035 (2010). https://doi.org/10.1007/s10853-010-4481-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4481-9

Keywords

Navigation