Skip to main content
Log in

Interfacial adhesion improvement of plain woven carbon fiber reinforced epoxy filled with micro-fibrillated cellulose by addition liquid rubber

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In certain application of fiber reinforced polymer composites fracture resistance is required. The aim of this study was to improve the interfacial adhesion between plain woven carbon fiber (CF) and epoxy matrix filled with microfibrillated cellulose (MFC) modified with carboxyl-terminated butadiene acrylonitrile (CTBN) as liquid rubber. CF/Epoxy/MFC/CTBN composite was characterized by different techniques, namely, tensile, bending, fracture toughness (mode I) test, and scanning electron microscope (SEM). The results reveal that at a fiber content 1% of MFC and 10% CTBN, initiation and propagation interlaminar fracture toughness in mode I improved significantly by 96 and 127%, respectively, which could be attribute to strong adhesion between filled epoxy, CF, and rubber. This can be explained by SEM at given weight as well; SEM images showed that in front of the tip, fiber breakage during initiation delimination as well as the extensive matrix deformation between fibers accounting for increase fracture toughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Darder M, Aranda P, Ruiz-Hitzky E (2007) Adv Mater 19:1309

    Article  CAS  Google Scholar 

  2. Angles MN, Dufresne A (2001) Macromolecules 34:2921

    Article  CAS  ADS  Google Scholar 

  3. Zimmermann T, Pohler E, Geiger T (2004) Adv Eng Mater 6(9):754

    Article  Google Scholar 

  4. Soykeabkaew N, Arimoto N, Nishino T, Peijs T (2008) Compos Sci Technol 68:2201

    Article  CAS  Google Scholar 

  5. Iwatake A, Nogi M, Yano H (2008) Compos Sci Technol 68:2103

    Article  CAS  Google Scholar 

  6. Abdelmouleh M, Boufi S, Belgacem MN, Dufresne A, Gandini A (2005) J Appl Polym Sci 98:974

    Article  CAS  Google Scholar 

  7. Nakagaito AN, Yano H (2008) Cellulose 15:555

    Article  CAS  Google Scholar 

  8. Lu J, Wang T, Drzal LT (2008) Composites A 39:738

    Article  Google Scholar 

  9. Lu J, Askeland P, Drzal LT (2008) Polymer 49:1285

    Article  CAS  Google Scholar 

  10. Takagaki N, Okubo K, Fujii T (2008) In: Proceedings of the sixth Asia–Australasian conference on composite materials (ACCM/6), Kumamouto, 23–26 September 2008, pp 499–501

  11. Nakagaito AN, Yano H (2005) Appl Phys A 80(1):155

    Article  CAS  ADS  Google Scholar 

  12. Svagan AJ, Samir MASA, Berglund LA (2007) J Polym Environ 8:2556

    CAS  Google Scholar 

  13. Suryanegara L, Nakagaito AN, Yano H (2009) Compos Sci Technol 69:1187

    Article  CAS  Google Scholar 

  14. Todo M, Jar P-YB, Takahashi K (2000) Compos Sci Technol 60(2):263

    Article  CAS  Google Scholar 

  15. Okubo K, Fujii T, Yamashita N (2005) JSME Int J Ser A 48(4):199

    Article  Google Scholar 

  16. Okubo K, Fujii T, Thostenson ET (2009) Composites A 40:469

    Article  Google Scholar 

  17. Naoya Y, Kazuya O, Fujii T (2004) Bamboo J 21:35

    Google Scholar 

  18. Mazumdar SK (2002) Composites manufacturing: materials, product, and process engineering. CRC Press LLC, USA

    Google Scholar 

  19. Thomas R, Yumei D, Yuelong H, Le Y, Moldenaers P, Weimin Y, Czigany T, Thomas S (2008) Polymer 49(1):278

    Article  Google Scholar 

  20. Verchere D, Sautereau H, Pascault JP, Moschiar SM, Riccardi CC, Williams RJJ (1990) J Appl Polym Sci 41:467

    Article  CAS  Google Scholar 

  21. Chen TK, Jan YH (1991) Polym Eng Sci 31(8):577

    Article  CAS  Google Scholar 

  22. Bussi P, Ishida H (1994) J Appl Polym Sci 53(4):441

    Article  CAS  Google Scholar 

  23. Nigam V, Setua DK, Mathur GN (1999) Polym Eng Sci 39(8):1424

    Article  Google Scholar 

  24. Ratna D, Banthia AK (2000) Polym Int 49:281

    Article  CAS  Google Scholar 

  25. Shukla SK, Srivastava D (2006) J Appl Polym Sci 100(3):1802

    Article  CAS  Google Scholar 

  26. Pearson RA, Yee AF (1989) J Mater Sci 24:2571. doi:10.1007/BF01174528

    Article  CAS  ADS  Google Scholar 

  27. Thomas R, Abraham J, Thomas S (2004) J Polym Sci B 42(13):2531

    Article  CAS  Google Scholar 

  28. Tripathi G, Srivastava D (2007) Mater Sci Eng A 443:262

    Article  Google Scholar 

  29. Chand S (2000) J Mater Sci 35:1303. doi:10.1023/A:1004780301489

    Article  CAS  Google Scholar 

  30. Gabr MH, Okuba K, Elrahman MA, Fujii T (2009) Compos Struct. doi:10.1016/j.compstruct.2009.12.009

  31. JIS K7073 (1988) Testing method for tensile properties of carbon fiber-reinforced plastics. Japanese Industrial Standard, Japanese Standards Association

  32. JIS K 7074 (1988) Testing methods for flexural properties of carbon fiber reinforced plastics. Japanese Industrial Standard, Japanese Standards Association

  33. JIS K 7086 (1997) Testing methods for interlaminar fracture toughness of carbon fibre reinforced plastics. Japanese Industrial Standard, Japanese Standards Association

  34. Hodgkinson JM (2000) Mechanical testing of advanced fibre composites. CRC Press, Cambridge

    Book  Google Scholar 

  35. Abadyan M, Khademi V, Bagheri R, Haddadpour H, Kouchakzadeh MA, Farsadi M (2009) Mater Des 30:1976

    CAS  Google Scholar 

  36. Harismendy I, Miner R, Valea A, Llano-Ponte R, Mujika F, Mondragon I (1997) Polymer 38:5573

    Article  CAS  Google Scholar 

  37. Charlesworth JM (1988) Polym Eng Sci 28(4):230

    Article  CAS  Google Scholar 

  38. Tripathi G, Srivast D (2007) Mater Sci Eng A 443(1–2):262

    Google Scholar 

  39. Verchere D, Pascault JP, Sautereau H, Moschiar SM, Riccardi CC, Williams RJJ (1991) J Appl Polym Sci 42(3):701

    Article  CAS  Google Scholar 

  40. Velmurugan R, Solaimurugan S (2007) Compos Sci Technol 67(1):61

    Article  CAS  Google Scholar 

  41. Shah Khan MZ, Mouritz AP (1996) Compos Sci Technol 56(6):695

    Article  CAS  Google Scholar 

  42. Ray D, Sarkar BK, Bose NR (2002) Composites A 33(2):233

    Article  Google Scholar 

  43. Gao B, Kim J-K, Leung CKY (2003) Compos Sci Technol 63:883

    Article  CAS  Google Scholar 

  44. Jordan WM, Bradley WL (1987) In: Johnston NJ (ed) Toughened composites. ASTM special technical publication 937. ASTM, Philadelphia, pp 95–114

  45. Wetzel B, Rosso P, Haupert F, Friedrich K (2006) Eng Fract Mech 73:2375

    Article  Google Scholar 

  46. Faber KT, Evans AG (1983) Acta Metall 31(4):565

    Article  Google Scholar 

  47. Faber KT, Evans AG (1983) Acta Metall 31(4):577

    Article  Google Scholar 

  48. Barcia FL, Amaral TP, Soares BG (2003) Polymer 44(19):5811

    Article  CAS  Google Scholar 

  49. Todo M, Jar P-YB (1998) Compos Sci Technol 58(1):105

    Article  Google Scholar 

  50. Alif N, Carlsson LA, Boogh L (1998) Composites B 29(5):603

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed H. Gabr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gabr, M.H., Elrahman, M.A., Okubo, K. et al. Interfacial adhesion improvement of plain woven carbon fiber reinforced epoxy filled with micro-fibrillated cellulose by addition liquid rubber. J Mater Sci 45, 3841–3850 (2010). https://doi.org/10.1007/s10853-010-4439-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4439-y

Keywords

Navigation