Skip to main content
Log in

Rheology of asphalt and styrene–butadiene blends

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In recent years, many authors have researched polymer-modified asphalt blends and tried to better understand the rheological behavior of these materials. In this work, the thermomechanical response of an asphalt formulation was researched trying to find better asphalt-modified blends that allow for the construction of improved asphalt roads. The experimentation included several polymer–maltene formulations developed at different polymer concentrations and temperatures where the asphaltenes of the original asphalt were removed. Such separation was carried out because the maltene fraction represents the portion of the asphalt that chemically reacts with the polymer modifier. The rheological behavior of the blends was determined from oscillatory shear flow data. Analysis of the G′, G′′, G* moduli and phase angle (δ) as a function of oscillatory frequency for various temperatures led to the conclusion that the maltenes behaved as a pseudo-homogeneous viscoelastic material that could dissipate stress without presenting structural changes. Furthermore, all maltenes–polymer blends behaved more viscoelastically than the non-blended maltenes depending on the amount of the polymer contained in the formulation. The blend viscosity increased with polymer concentration, and this increase was seen in both the viscous and elastic moduli. Furthermore, performance grade trials were also performed according to the AASHTO TP5 to determine the failing temperature. It was noticed that the limiting temperature increased with the modifier concentration with a δ between 50° and 60°, indirect value of elasticity found to have industrial applications for asphalt pavements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Loeber L, Sutton O, Morel J, Valleton JM, Muller G (1996) J Microscop 182:32

    Article  CAS  Google Scholar 

  2. Lessueur D (2002) Rhéol 2:1

    Google Scholar 

  3. Zanzotto L, Stastna J, Ho K (1996) J Appl Polym Sci 59:1897

    Article  CAS  Google Scholar 

  4. Wloczysiak P, Vidal A, Papirer E (1997) J Appl Polym Sci 65:1609

    Article  CAS  Google Scholar 

  5. García-Leiner MA (1999) Caracterización reológica de Polibutadienos funcionalizados obtenidos por Polimerización Aniónica, UNAM, México 1999/M.Sc. Thesis

  6. Airey GD (2004) J Mater Sci 39:951. doi:10.1023/B:JMSC.0000012927.00747.83

    Article  CAS  ADS  Google Scholar 

  7. Isacsson U, Lu X (1999) J Mater Sci 34:3737. doi:10.1023/A:1004636329521

    Article  CAS  Google Scholar 

  8. Lu X, Isacsson U (2001) Polym Test 20:77

    Article  CAS  Google Scholar 

  9. Gonzalez-Aguirre P, Medina-Torres L, Schrauwen C, Fonteix C, Pla F, Herrera-Najera F (2009) J Appl Polym Sci 112:1330

    Article  CAS  Google Scholar 

  10. Wen G, Zhang Y, Sun K, Fan Y (2002) Polym Test 21:295

    Article  CAS  Google Scholar 

  11. Vargas MA, Chávez AE, Herrera R, Manero O (2005) Rubber Chem Technol 78:620

    CAS  Google Scholar 

  12. Polacco G, Berlincioni S, Biondi D, Stastna J, Zansotto L (2005) Eur Polym J 41:2831

    Article  CAS  Google Scholar 

  13. Polacco G, Muscente A, Biondi D, Santini S (2006) Eur Polym J 42:1113

    Article  CAS  Google Scholar 

  14. Becker MY, Müller AJ, Rodríguez Y (2003) J Appl Polym Sci 90:1772

    Article  Google Scholar 

  15. Cremades-Ibáñez I (2006) Determinación del Grado de Desempeño del Asfalto usando como Parámetro de Especificación la Viscosidad de Corte Cero. Asfáltica, Revista Técnica, p 13

  16. Ouynag C, Wang S, Zhang Y, Zhang Y (2006) Eur Polym J 42:446

    Article  Google Scholar 

  17. Lu X, Isacsson U (1997) Mater Struct 30:618

    Article  CAS  Google Scholar 

  18. Blanco R, Rodríguez R, García-Garduño M, Castaño VM (1996) J Appl Polym Sci 61:1493

    Article  CAS  Google Scholar 

  19. Martínez-Boza F, Partal P, Navarro FJ (2001) Rheol Acta 40:135

    Article  Google Scholar 

  20. Ajji A, Utracki LA (1996) Polym Eng Sci 36:1565

    Article  Google Scholar 

  21. Ait-Kadi A, Brahimi B, Bousmina M (1996) Polym Eng Sci 36:1724

    Article  CAS  Google Scholar 

  22. Alonso S, Medina-Torres L, Zitzumbo-Guzmán R, Delgado-Alamilla H, Garnica-Anguas P (2007) Reologia de Mezclas de Asfaltos de AC-20 y Estireno-Butadieno. 5th Mexican Asph Congr Proc August 29–31. Cancún, México

Download references

Acknowledgements

The authors would like to thank Wendy Elizabeth Slee for the revision of the English editing. Furthermore, we appreciate the financial support provided by Research Hidalgo System (SIHGO) and Federal Electoral Institute (IFE) fundings belonging to the National Council of Science and Technology (CONACYT) and also the Summer Research Project Funding from the Guanajuato State Council of Science and Technology (CONCYTEG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Alonso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alonso, S., Medina-Torres, L., Zitzumbo, R. et al. Rheology of asphalt and styrene–butadiene blends. J Mater Sci 45, 2591–2597 (2010). https://doi.org/10.1007/s10853-010-4230-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4230-0

Keywords

Navigation