Skip to main content
Log in

Determination of the elastic modulus of highly porous samples by nanoindentation: a case study on sea urchin spines

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Nanoindenation studies were carried out on single crystal calcite and on sea urchin spines from Heterocentrotus mammillatus, Phyllacanthus imperialis, and Prinocidaris baculosa. Unlike dense calcite single crystals resin embedded porous sea urchin spine segments showed a strong dependence of the indentation modulus, but not the indentation hardness, on the local porosity. This implies that the sampled volume for the indentation modulus in nanoindentation with forces down to 15 mN is not nanoscopic but extends approximately 50 μm around the indentation spot. Only for indentation depths ≪100 nm more or less mount-unaffected values of the indentation modulus could be found. The Voigt model for composite materials (calcite/resin) was found to be applicable for the dependency of the indentation modulus on the porosity. This is attributed to the network type of porosity and opens strategies for the control of stiffness in porous networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Vlassak JJ, Nix WD (1992) J Mater Res 7:3242

    Article  ADS  CAS  Google Scholar 

  2. Doerner MF, Gardner DS, Nix WD (1986) J Mater Res 1:845

    Article  ADS  CAS  Google Scholar 

  3. Chiu C-C, Liou Y, Juang Y-D (1995) Thin Solid Films 260:118

    Article  ADS  CAS  Google Scholar 

  4. Fischer-Cripps AC (2004) Nanoindentation. Springer Verlag, Berlin

    Google Scholar 

  5. Asif SAS, Wahl KJ, Colton RJ (1999) Rev Sci Instrum 70:2408

    Article  ADS  CAS  Google Scholar 

  6. Oliver WC, Pharr GM (1992) J Mater Res 7:1564

    Article  ADS  CAS  Google Scholar 

  7. Sakai M (2009) J Mater Res 24

  8. Nix WD, Gao H (1998) J Mech Phys Solids 46:411

    Article  MATH  ADS  CAS  Google Scholar 

  9. Pharr GM, Strader JH, Oliver WC (2009) J Mater Res 24:635

    Article  Google Scholar 

  10. Broz ME, Cook RF, Whitney DL (2006) Am Miner 91:135

    Article  CAS  Google Scholar 

  11. Ma D, Ong CW, Wong SF (2005) J Mater Sci 40:2685. doi:10.1007/s10853-005-2106-5

    Article  ADS  CAS  Google Scholar 

  12. Presser V, Schultheiß S, Berthold C, Nickel KG (2009) J Bionic Eng 6:203

    Article  Google Scholar 

  13. Presser V, Kohler C, Zivcova Z, Schultheiß S, Berthold C, Nickel KG, Pabst W, Gregorova E (2009) J Bionic Eng 6:357

    Article  Google Scholar 

  14. O’Neill PL (1981) Science 213:646

    Article  PubMed  ADS  Google Scholar 

  15. Magdans U, Gies H (2004) Eur J Miner 16:261

    Article  CAS  Google Scholar 

  16. Sethmann I, Putnis A, Grassmann O, Löbmann P (2005) Am Miner 90:1213

    Article  CAS  Google Scholar 

  17. Sethmann I, Hinrichs R, Wörheide G, Putnis A (2006) J Inorg Biochem 100:88

    Article  PubMed  CAS  Google Scholar 

  18. Sethmann I, Wörheide G (2008) Micron 39:209

    Article  PubMed  CAS  Google Scholar 

  19. Berman A, Addadi L, Kvick A, Leiserowitz L, Nelson M, Weiner S (1990) Science 250:664

    Article  PubMed  ADS  CAS  Google Scholar 

  20. Din E (2007) Metallische Werkstoffe. Instrumentierte Eindringprüfung zur Bestimmung der Härte und anderer Werkstoffparameter. Teil 4: Prüfverfahren für metallische und nichtmetallische Schichten. Beuth Verlag, Berlin, p 31

  21. Perez-Huerta A, Cusack M, Zhu W, England J, Hughes J (2007) J R Soc Interface 4:33

    Article  PubMed  CAS  Google Scholar 

  22. Delesse A (1848) Ann Miner 4:379

    Google Scholar 

  23. Rosiwal AK (1898) Verhandlungen der Geologischen Reichsanstalt Wien 1898:143

    Google Scholar 

  24. Ma Y, Cohen SR, Addadi L, Weiner S (2008) Adv Mater 20:1555

    Article  CAS  Google Scholar 

  25. Griesshaber E, Schmahl WW, Neuser R, Pettke T, Blum M, Mutterlose J, Brand U (2007) Am Miner 92:722

    Article  CAS  Google Scholar 

  26. Zügner S, Marquardt K, Zimmermann I (2006) Eur J Pharm Biopharmaceutics 62:194

    Article  CAS  Google Scholar 

  27. Hangen UD (2001) Zeitschrift für Metallkunde 92:1074

    CAS  Google Scholar 

  28. Merkel C, Griesshaber E, Kelm K, Neuser R, Jordan G, Logan A, Mader W, Schmahl WW (2007) J Geophys Res Biogeosciences 112:G02008/1

    CAS  Google Scholar 

  29. Thanh DV, Lacam A (1984) Phys Earth Planet Interiors 34:195

    Article  ADS  CAS  Google Scholar 

  30. Yamamoto A, Shiro Y, Murata H (1974) Bull Chem Soc Jpn 47:265

    Article  CAS  Google Scholar 

  31. Wang RZ, Addadi L, Weiner S (1997) Philos Trans R Soc Lond B 352:469

    Article  ADS  CAS  Google Scholar 

  32. Tai K, Dao M, Suresh S, Palazoglu A, Ortiz C (2007) Nat Mater 6:454

    Article  PubMed  ADS  CAS  Google Scholar 

  33. Schmahl WW, Griesshaber E, Merkel CK, Deuschle J, Neuser RD, Göetz AJ, Sehrbrock A, Mader W (2008) Miner Mag 72:541

    Article  CAS  Google Scholar 

  34. Griesshaber E, Kelm K, Sehrbrock A, Job R, Schmahl WW, Mader W (2006) Mater Res Soc Sym Proc 898E:0898

    Google Scholar 

  35. Sachs C, Fabritius H, Raabe D (2006) J Mater Res 21:1987

    Article  ADS  CAS  Google Scholar 

  36. Grim JR, Benamara M, Skowronski M, Everson WJ, Heydemann VD (2006) Semicond Sci Technol 21:1709

    Article  ADS  CAS  Google Scholar 

  37. West GD, Perkins JM, Lewis MH (2004) J Mater Sci 39:6687. doi:10.1023/B:JMSC.0000045600.77776.08

    Article  ADS  CAS  Google Scholar 

  38. Presser V, Berthold C, Wirth R, Nickel KG (2008) Curr Opin Solid State Mater Sci 12:73

    Article  CAS  Google Scholar 

  39. Ashby MF (2004) Materials selection in mechanical design. Elsevier, Amsterdam

    Google Scholar 

  40. Liu Y, Gong X-I (2006) Trans Nonferrous Met Soc China 16:s439

    Article  Google Scholar 

  41. Pabst W, Gregorova E, Ticha G (2006) J Eur Ceram Soc 26:1085

    Article  CAS  Google Scholar 

  42. Gregorova E, Zivcova Z, Pabst W (2006) J Mater Sci 41:6119. doi:10.1007/s10853-006-0475-z

    Article  ADS  CAS  Google Scholar 

  43. Pabst W, Gregorová E (2003) J Mater Sci Lett 22:959

    Article  CAS  Google Scholar 

  44. Pabst W, Gregorova E (2004) J Mater Sci 39:3501. doi:10.1023/B:JMSC.0000026961.12735.2a

    Article  ADS  CAS  Google Scholar 

  45. Ai A, Dai LH (2007) Scripta Mater 56:761

    Article  CAS  Google Scholar 

  46. Galanov BA, Domnich V, Gogotsi Y (2002) Exp Mech 43:303

    Google Scholar 

  47. Gao X-L (2006) J Mater Res 21:1317

    Article  ADS  CAS  Google Scholar 

  48. Wegner LD, Gibson LJ (2000) Int J Mech Sci 42:925

    Article  MATH  Google Scholar 

  49. Wegner LD, Gibson LJ (2000) Int J Mech Sci 42:943

    Article  Google Scholar 

  50. Tai K, Qi HJ, Ortiz C (2005) J Mater Sci Mater Med 16:947

    Article  PubMed  CAS  Google Scholar 

  51. Kikuchi M, Takahashi Y, Suga T, Suzuki S, Bando Y (1992) J Am Ceram Soc 75:189

    Article  CAS  Google Scholar 

  52. Owman F, Hallin C, Martensson P, Janzen E (1996) J Cryst Growth 167:391

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the funding of this study by the Landesstiftung Baden-Württemberg foundation as a part of the interdisciplinary project “New materials from bionics.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Presser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Presser, V., Gerlach, K., Vohrer, A. et al. Determination of the elastic modulus of highly porous samples by nanoindentation: a case study on sea urchin spines. J Mater Sci 45, 2408–2418 (2010). https://doi.org/10.1007/s10853-010-4208-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4208-y

Keywords

Navigation