Skip to main content
Log in

Synthesis of a fullerene/expanded graphite composite and its lubricating properties

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A fullerene/expanded graphite composite, in which fullerene crystals were incorporated into the expanded graphite interspaces, was prepared by chemical and thermal treatments and its lubricating properties in commercial grease were investigated. Expanded graphite, which was synthesized from graphite by oxidizing by KMnO4 in 98% H2SO4 containing NaNO3 and by heating at 400 °C for 3 min, and fullerene were placed in a stainless steel tube, and were heated in a furnace under vacuum at 600 °C for 2 weeks. The fullerene/expanded graphite composite obtained was characterized by X-ray diffraction analysis (XRD), Fourier transform infrared (FT-IR) spectroscopy, and scanning electron microscopy (SEM). XRD and FT-IR analyses showed that crystalline fullerene was present in the material and SEM images confirmed that it existed in the expanded graphite interspaces. The composite was blended with a commercial grease, and its lubricating properties were investigated using a four-ball lubricant tester. These properties were evaluated by measuring the wear scar diameter and wear volume loss of the test ball. The combination of composite and grease provided a better lubricating performance than that of pure graphite and grease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Alexandre M, Dubois P (2000) Mater Sci Eng A 28:1

    Google Scholar 

  2. SinhaRay S, Okamoto M (2003) Prog Polym Sci 28:1539

    Article  Google Scholar 

  3. Pan Y-X, Yu Z-Z, Ou Y-C, Hu G-H (2000) J Polym Sci B Polym Phys 38:1626

    Article  CAS  Google Scholar 

  4. George JJ, Bhowmick AK (2008) J Mater Sci 43:702. doi:10.1007/s10853-007-2193-6

    Article  CAS  ADS  Google Scholar 

  5. Wang W-P, Pan C-Y (2004) Polymer 45:3987

    Article  CAS  Google Scholar 

  6. Zheng G, Wu J, Wang W, Pan C (2004) Carbon 42:2839

    Article  CAS  Google Scholar 

  7. Chen G, Lu J, Wu D (2005) J Mater Sci 40:5041. doi:10.1007/s10853-005-1119-4

    Article  CAS  ADS  Google Scholar 

  8. Song LN, Xiao M, Meng YZ (2006) Comp Sci Tech 66:2156

    Article  CAS  Google Scholar 

  9. Zhao YF, Xiao M, Wang SJ, Ge XC, Meng YZ (2007) Comp Sci Tech 67:2528

    Article  CAS  Google Scholar 

  10. Kojima Y, Usuki A, Kawasumi M, Okada A, Fukushima Y, Kurauchi T, Kamigaito O (1993) J Mater Res 8:1185

    Article  CAS  ADS  Google Scholar 

  11. Yoshimoto S, Ohashi F, Ohnishi Y, Nonami T (2004) Synth Met 145:265

    Article  CAS  Google Scholar 

  12. Yoshimoto S, Ohashi F, Kameyama T (2004) Macromol Rapid Commun 25:1687

    Article  CAS  Google Scholar 

  13. Chung DDL (1987) J Mater Sci 22:4190. doi:10.1007/BF01132008

    Article  CAS  ADS  Google Scholar 

  14. Lee S, Cho D, Drzal T (2005) J Mater Sci 40:231. doi:10.1007/s10853-005-5715-0

    Article  CAS  ADS  Google Scholar 

  15. Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) Nature 318:162

    Article  CAS  ADS  Google Scholar 

  16. Krätschmer W, Lamb LD, Fostiropoulos K, Huffman DR (1990) Nature 347:354

    Article  ADS  Google Scholar 

  17. Wilson LJ, Cagle DW, Thrash TP, Kennel SJ, Mirzadeh S, Alford JM, Ehrhardt GJ (1999) Coord Chem Rev 190–192:199

    Article  Google Scholar 

  18. Da Ros T, Prato M (1999) Chem Commun 8:663

    Article  Google Scholar 

  19. Oberdörster E, Zhu S, Blickley TM, McClellan-Green P, Haasch ML (2006) Carbon 44:1112

    Article  Google Scholar 

  20. Blau PJ, Haberlin CE (1992) Thin Solid Films 219:129

    Article  CAS  ADS  Google Scholar 

  21. Taylor R, Avent AG, Dennis TJ, Hare JP, Kroto HW, Walton DRM, Holloway JH, Hope EG, Langley GJ (1992) Nature 355:27

    Article  ADS  Google Scholar 

  22. Bharat Bhushan, Gupta BK, Van Cleef Garrett W, Cynthia Capp, Coe James V (1993) STLE Tribol Trans 36:573

    Article  Google Scholar 

  23. Campbell SE, Luengo G, Srdanov VI, Wudl F, Israelachvili JN (1996) Nature 382:520

    Article  CAS  ADS  Google Scholar 

  24. Gupta BK, Bharat Bhushan (1994) Lubr Eng 50:524

    CAS  Google Scholar 

  25. Mazin II, Rashkeev SN, Antropov VP, Jepsen O, Liechtenstein AI, Andersen OK (1992) Phys Rev B 45:5114

    Article  CAS  ADS  Google Scholar 

  26. Scharff P (1998) Carbon 36:481

    Article  CAS  Google Scholar 

  27. Saito S, Oshiyama A (1994) Phys Rev B 49:17413

    Article  ADS  Google Scholar 

  28. Gupta V, Scharff P, Risch K, Romanus H, Müller R (2004) Solid State Commun 131:153

    Article  CAS  ADS  Google Scholar 

  29. Kuc A, Zhechkov L, Patchkovskii S, Seifert G, Heine T (2007) Nano Lett 7:1

    Article  CAS  PubMed  ADS  Google Scholar 

  30. Lüthi R, Meyer E, Haefke H, Howald L, Gutmannsbauer W, Güntherodt H-J (1994) Science 266:1979

    Article  PubMed  ADS  Google Scholar 

  31. Li ZY (1999) Surf Sci 441:366

    Article  CAS  ADS  Google Scholar 

  32. Okita S, Ishikawa M, Miura K (1999) Surf Sci 442:L959

    Article  CAS  Google Scholar 

  33. Miura K, Kamiya S, Sasaki N (2003) Phys Rev Lett 90:055509/1-4

    Google Scholar 

  34. Miura K, Tsuda D, Sasaki N (2005) e-J Surf Sci Nanotech 3:21

    Article  CAS  Google Scholar 

  35. Miura K, Tsuda D, Itamura N, Sasaki N (2007) Jpn J Appl Phys 46:5269

    Article  CAS  ADS  Google Scholar 

  36. Hummers WS, Offeman RE (1958) J Am Chem Soc 80:1339

    Article  CAS  Google Scholar 

  37. Heiney PA, Fischer JE, McGhie AR, Romanow WJ, Denenstein AM, McCauley JP, Smith AB, Cox DE (1991) Phys Rev Lett 66:2911

    Article  CAS  PubMed  ADS  Google Scholar 

  38. Averill BA, Sutto TE, Fabre J-M (1994) Mol Cryst Liq Cryst 244:77

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the staff in Chukyo Kasei Kogyo Co., Ltd for supporting triobological measurements and useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shoji Yoshimoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshimoto, S., Amano, J. & Miura, K. Synthesis of a fullerene/expanded graphite composite and its lubricating properties. J Mater Sci 45, 1955–1962 (2010). https://doi.org/10.1007/s10853-009-4187-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-4187-z

Keywords

Navigation