Skip to main content
Log in

In vitro degradation and drug release from polymer blends based on poly(dl-lactide), poly(l-lactide-glycolide) and poly(ε-caprolactone)

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Bioresorbable materials are extensively used for a wide range of biomedical applications. Accurately modifying and evaluating the degradation rate of these materials is critical to their performance and the controlled release of bioactive agents. The aim of this work was to modify the physical properties, degradation rate and drug delivery characteristics of thin films for medical applications by blending poly(dl-lactic acid) (PDLLA), poly(l-lactide-co-glycolide) (PLGA) and poly(ε-caprolactone) (PCL). The thin films were prepared using solvent casting and compression moulding and the in vitro degradation study was performed by immersing the films in a phosphate-buffered saline at elevated temperature for a period of 4 weeks. The degradation rate of the materials was analysed by differential scanning calorimetry, tensile testing and weight loss studies. The thermal analysis of the blends indicated that the presence of PLGA or PDLLA in the film resulted in increased degradation of the amorphous regions of PCL. It was observed that the samples consisting of PDLLA with PCL demonstrated the greatest weight loss. The decrease in mechanical properties observed for both sets of polymer blends proved to be similar. The solvent cast technique was selected as the most appropriate for the formation of the polymer/drug matrices, due to the potentially adverse thermal processing effects associated with compression moulding. It was found that modulation of drug release was achievable by altering the ratio of PCL to PDLLA or PLGA in the thin film blends.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Borden M (2006) Wiley encyclopedia of biomedical engineering. Wiley, New York

    Google Scholar 

  2. Lanza R, Langer R, Vacanti J (2007) Principles of tissue engineering. Elsevier Academic Press, New York

    Google Scholar 

  3. Gunatillake PA, Adhikari R (2003) Eur Cells Mater 5:1

    CAS  Google Scholar 

  4. Geever L, Devine D, Nugent M, Kennedy J, Lyons J, Higginbotham C (2006) Eur Polym J 42:69

    CAS  Google Scholar 

  5. Edlund U, Albertsson AC (2002) Adv Polym Sci 157:67

    Article  CAS  Google Scholar 

  6. Pitt CG (1990) Biodegradable polymers as drug delivery systems. Marcel Dekker, New York, pp 71–120

    Google Scholar 

  7. Benoit MA, Baras B, Gillard J (1999) Int J Pharm 184:73

    Article  CAS  PubMed  Google Scholar 

  8. Lewis DH (1990) Biodegradable polymers as drug delivery systems. Marcel Dekker, New York, pp 1–41

    Google Scholar 

  9. Vert M (1996) The complexity of PLAGA-based drug delivery systems. In: Proceedings of the international conference on advances in controlled delivery, Baltimore MD, pp 32–36

  10. Utracki LA (2002) Polymer blends handbook. Kluwer Academic Publishers, London

    Google Scholar 

  11. Chen C, Chueh J, Tseng H, Huang H, Lee S (2003) Biomaterials 24:1167

    Article  CAS  PubMed  Google Scholar 

  12. Lyons JG, Holehonnur H, Devine DM, Kennedy JE, Geever LM, Blackie P, Higginbotham CL (2007) Mater Chem Sci 103:419

    CAS  Google Scholar 

  13. Hukins DWL, Mahomed A, Kukureka SN (2008) Med Eng Phys 30:1270

    Article  CAS  PubMed  Google Scholar 

  14. Scott G, Gilead D (1995) Degradable polymers: principles and applications. Chapman & Hall, London

    Google Scholar 

  15. Gowariker VR, Viswanathan NV, Sreedhar J (1986) Polymer science. New Age International (P) Ltd, India

    Google Scholar 

  16. Lim LT, Auras R, Rubino M (2008) Prog Polym Sci 33:820

    Article  CAS  Google Scholar 

  17. Saha SK, Tsuji H (2006) React Funct Polym 66:1362

    Article  CAS  Google Scholar 

  18. Gupta AP, Kumar V (2007) Eur Polym J 43:4053

    Article  CAS  Google Scholar 

  19. Liu C, Xia Z, Czernuszka JT (2007) Chem Eng Res Des 85:1051

    Article  CAS  Google Scholar 

  20. Mathiowitz E (1999) Encyclopedia of controlled drug delivery, vol 1–2. Wiley, New York

    Google Scholar 

  21. Bajpai AK, Shukla SF, Bhanu S, Kankane S (2008) Prog Polym Sci 33:1088

    Article  CAS  Google Scholar 

  22. Södergård A, Stolt M (2002) Prog Polym Sci 27:1123

    Article  Google Scholar 

  23. Coombes AGA, Rizzi SC, Williamson M, Barralet JE, Downes S, Wallace WA (2004) Biomaterials 25:315

    Article  CAS  PubMed  Google Scholar 

  24. Langer R (1995) Chem Eng Sci 50:4109

    Article  CAS  Google Scholar 

  25. Eastmond GC (1999) Adv Polym Sci 149:59

    Article  CAS  Google Scholar 

  26. Yu PQ, Xie XM, Wang Z, Li HS, Bates FS (2006) Polymer 47:1460

    Article  CAS  Google Scholar 

  27. Chouzouri G, Xanthos M (2006) Degradation of aliphatic polyesters in the presence of inorganic fillers. In: Proceedings of ANTEC 2006 Plastics, Annual Technical Conference Society of Plastics Engineers

  28. Little U, Buchanan F, Harkin-Jones E, McCaigue M, Farrar D, Dickson G (2009) Polym Degrad Stabil 94:213

    Article  CAS  Google Scholar 

  29. Reed AM, Gilding DK (1981) Polymer 22:499

    Article  CAS  Google Scholar 

  30. Domb AJ (1993) J Polym Sci A Polym Chem 31

  31. Chen DR, Bei JZ, Wang SG (2000) Polym Degrad Stabil 67:455

    Article  CAS  Google Scholar 

  32. Koleshe JV (1978) Polymer blends, vol 2. Academic Press, New York

    Google Scholar 

  33. Jali R, Nixon JR (1990) J Microencapsul 7:297

    Article  Google Scholar 

  34. Cao X, Shoichet MS (1999) Biomaterials 20:329

    Article  CAS  PubMed  Google Scholar 

  35. Kweon H, Yoo MK, Park IK, Kim TH, Lee HC, Lee HS, Oh JS, Akaike T, Cho CS (2003) Biomaterials 24:801

    Article  CAS  PubMed  Google Scholar 

  36. Tsuji H, Ikada Y (1996) J Appl Polym Sci 60:2367

    Article  CAS  Google Scholar 

  37. Wnek G, Bowlin G (eds) (2008) Encyclopedia of biomaterials and biomedical engineering. Informa Health Care, UK

    Google Scholar 

  38. Li S, McCarthy S (1999) Biomaterials 20:35

    Article  CAS  PubMed  Google Scholar 

  39. Alexis F (2004) Polym Int 54:36

    Article  Google Scholar 

  40. Rutkowska M, Krasowska K, Heimowska A, Steink A, Janik H, Karlsson S, Haponiuk J (2002) Pol J Environ Stud 11:413

    CAS  Google Scholar 

  41. Kelen T (1983) Polymer degradation. Van Nostrand Reinhold Company, New York

    Google Scholar 

  42. Pitt CG, Gratzl MM, Jeffcoat AR, Zweidinger R, Schindler A (1979) J Pharm Sci 68:1534

    Article  CAS  PubMed  Google Scholar 

  43. Heya T, Okada H, Ogawa Y, Toguchi H (1991) Int J Pharmaceut 72:199

    Article  CAS  Google Scholar 

  44. Shen Y, Sun W, Zhu KJ, Shen Z (2000) J Biomed Mater Res 50:528

    Article  CAS  PubMed  Google Scholar 

  45. Godinho J, Moore I, Donnelly L, Lew CY, Douglas P, Jones D, McNally GM, Murphy WR (2005) Antec 2:3125

    Google Scholar 

Download references

Acknowledgement

This study was supported in parts by grants from both Enterprise Ireland and the Athlone Institute of Technology research and development fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clement L. Higginbotham.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McDonald, P.F., Lyons, J.G., Geever, L.M. et al. In vitro degradation and drug release from polymer blends based on poly(dl-lactide), poly(l-lactide-glycolide) and poly(ε-caprolactone). J Mater Sci 45, 1284–1292 (2010). https://doi.org/10.1007/s10853-009-4080-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-4080-9

Keywords

Navigation