Skip to main content
Log in

In situ high-temperature X-ray and neutron diffraction of Cu–Mn oxide phases

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Copper–manganese oxides were analyzed by in situ high-temperature powder neutron and X-ray diffraction to investigate their crystal structure. Cu–Mn spinel was found to form a continuous solid solution with cubic symmetry between Mn3O4 and Cu2MnO4. A high-temperature phase with approximate composition Cu5Mn4O9 was shown to have hexagonal symmetry. The cation distribution and lattice parameters of Cu–Mn spinel were resolved through Rietveld refinement of in situ neutron diffraction data. The results demonstrated that the Cu ion has a lower octahedral site preference than manganese ions, and quenching is not a reliable method to determine the equilibrium structure in the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bessekhouad Y, Gabes Y, Bouguelia A, Trari M (2007) J Mater Sci 42:6469. doi:https://doi.org/10.1007/s10853-006-1250-x

    Article  CAS  Google Scholar 

  2. Waskowska A, Gerward L, Olsen JS, Steenstrup S, Talik E (2001) J Phys Condens Matter 13:2549

    Article  CAS  Google Scholar 

  3. Fierro G, Ferraris G, Dragone R, Jacono LL, Faticanti M (2006) Catal Today 116:38

    Article  CAS  Google Scholar 

  4. Gillot B, Kharroubi M, Metz R, Legros R, Rousset A (1991) Phys Status Solidi A 124:317

    Article  CAS  Google Scholar 

  5. Vandenberghe RE, Brabers VAM, Robbrecht GG (1973) Phys Status Solidi A 16:K117

    Article  CAS  Google Scholar 

  6. Vandenberghe RE, Robbrecht GG (1973) Mater Res Bull 8:571

    Article  CAS  Google Scholar 

  7. Papavasiliou J, Avgouropoulos G, Ioannides T (2005) Catal Commun 6:497

    Article  CAS  Google Scholar 

  8. Trari M, Topfer J, Dordor P, Grenier JC, Pouchard M, Doumerc JP (2005) J Solid State Chem 178:2751

    Article  CAS  Google Scholar 

  9. Broemme ADD, Brabers VAM (1985) Solid State Ionics 16:171

    Article  Google Scholar 

  10. Martin BE, Petric A (2007) J Phys Chem Solids 68:2262

    Article  CAS  Google Scholar 

  11. Sinha APB, Sanjana NR, Biswas AB (1958) J Phys Chem 62:191

    Article  CAS  Google Scholar 

  12. Miyahara S (1962) J Phys Soc Japan 17:181

    CAS  Google Scholar 

  13. Blasse G (1966) J Phys Chem Solids 27:383

    Article  CAS  Google Scholar 

  14. Buhl R (1969) J Phys Chem Solids 30:805

    Article  CAS  Google Scholar 

  15. Dubrovina IN, Balakirev VF, Antonov AV (2001) Inorg Mater 37:76

    Article  CAS  Google Scholar 

  16. Dubrovina IN, Antonov AV, Balakirev VF, Chufarov GI (1981) Dokl Aakd Nauk SSSR 260:658

    CAS  Google Scholar 

  17. Kharroubi M, Gillot B, Legros R, Metz R, Vajpei AC, Rousset A (1991) J Less-Common Met 175:279

    Article  CAS  Google Scholar 

  18. Driessens FCM, Rieck GD (1967) Z Anorg Allgem Chem 351:48

    Article  CAS  Google Scholar 

  19. Gillot B, Buguet S, Kester E (1997) J Mater Chem 7:2513

    Article  CAS  Google Scholar 

  20. Lenglet M, Huysser AD, Kasperek J, Bonnelle JP, Durr J (1985) Mater Res Bull 20:745

    Article  CAS  Google Scholar 

  21. Vandenberghe RE, Robbrecht GG, Brabers VAM (1976) Phys Status Solidi A 34:583

    Article  CAS  Google Scholar 

  22. Radhakrishnan NK, Biswas AB (1977) Phys Status Solidi A 44:45

    Article  CAS  Google Scholar 

  23. Vandenberghe RE, Legrand E, Scheerilinck D, Brabers VAM (1976) Acta Cryst B32:2796

    Article  CAS  Google Scholar 

  24. Cranswick LMD, Donaberger RL (2008) J Appl Crystallogr 41:1038

    Article  CAS  Google Scholar 

  25. Cranswick LMD, Donaberger R, Swainson IP, Tun Z (2008) J Appl Crystallogr 41:373

    Article  CAS  Google Scholar 

  26. Larson AC, Von Dreele RB (1994) General structure analysis system (GSAS). Los Alamos National Laboratory Report LAUR 86-748

  27. Toby BH (2001) J Appl Crystallogr 34:210

    Article  CAS  Google Scholar 

  28. Shannon RD (1976) Acta Crystallogr A 32:751

    Article  Google Scholar 

  29. Dorris SE, Mason TO (1988) J Am Ceram Soc 71:379

    Article  CAS  Google Scholar 

  30. Levin EM, Roth RS (1964) J Res NBS 68A:197

    Article  Google Scholar 

  31. Maunders C, Martin BE, Wei P, Petric A, Botton GA (2008) Solid State Ionics 179:718

    Article  CAS  Google Scholar 

  32. Zaslavskii AI, Plakhtii VP (1969) Sov Phys Solid State 11:3

    Google Scholar 

  33. Metz R (2000) J Mater Sci 35:4705. doi:https://doi.org/10.1023/A:1004851022668

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank the Natural Sciences and Engineering Research Council of Canada for financial support. The authors also acknowledge I. David Brown, James Britten, Shahab Derakhshan, and Wenhe Gong for their assistance in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony Petric.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, P., Bieringer, M., Cranswick, L.M.D. et al. In situ high-temperature X-ray and neutron diffraction of Cu–Mn oxide phases. J Mater Sci 45, 1056–1064 (2010). https://doi.org/10.1007/s10853-009-4042-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-4042-2

Keywords

Navigation