Skip to main content
Log in

Methods for determining the in-service life of polymer water pipes

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A key requirement for polymer pipes, in having the ability to achieve a long in service life, is the retention by the polymeric material of its anti-oxidants. In dry air and other favourable environmental conditions the life-span of the polymer material can be many decades. However, when polymer pipes are transporting water and the pipes need to be installed in all kinds of ground conditions then the loss of anti-oxidant from the polymer can become more of a problem. To maintain integrity of water distribution networks, companies aim to plan for replacement of water pipes before they are likely to fail. This paper presents ways in which small scale evaluations of aged pipe material can be employed to assess remaining in-service life of water pipes. Small-scale chemical and physical evaluations have been devised to provide indicators of the ageing process with associated loss of mechanical properties. The presented studies were performed using MDPE and PE80 pipe materials. These materials were evaluated before and after ageing to identify which chemical and physical evaluations were the most appropriate to assess the remaining life of in service polymer pipes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kelen T (1983) Polymer degradation. Van Nostrand Reinhold Company, New York

  2. Schnabel W (1981) Polymer degradation—principles and practical applications. Hanser International, New York

    Google Scholar 

  3. Gedde UW, Ifwarson M (1990) Polym Eng Sci 30:202

    Article  CAS  Google Scholar 

  4. Gedde UW, Viebke J, Leijstrom H, Ifwarson M (1994) Polym Eng Sci 34:1773

    Article  CAS  Google Scholar 

  5. Karlsson K, Smith GD, Gedde UW (1992) Polym Eng Sci 32:649

    Article  CAS  Google Scholar 

  6. Verdu J, Colin X, Fayolle B, Audouin L (2007) J Test Eval 35:289

    CAS  Google Scholar 

  7. Viebke J, Gedde UW, Elble E (1996) Polym Eng Sci 36:458

    Article  CAS  Google Scholar 

  8. Viebke J, Gedde UW (1997) Polym Eng Sci 37:896

    Article  CAS  Google Scholar 

  9. Viebke J, Elble E, Ifwarson M, Gedde UW (1994) Polym Eng Sci 34:1354

    Article  CAS  Google Scholar 

  10. Viebke J, Hedenqvist M, Gedde UW (1996) Polym Eng Sci 36:2896

    Article  CAS  Google Scholar 

  11. Viebke J, Gedde UW (1998) Polym Eng Sci 38:1244

    Article  CAS  Google Scholar 

  12. Woo L, Khare AR, Sandford CL, Ling MTK, Ding SY (2001) J Therm Anal Cal 64:539

    Article  CAS  Google Scholar 

  13. Woo LC, Ling MTK, Eu B, Sandford C (2006) Thermochim Acta 442:61

    Article  CAS  Google Scholar 

  14. Sombatsompop N, Sungsanit K, Thongpin C (2004) Polym Eng Sci 44:487

    Article  CAS  Google Scholar 

  15. Kaci M, Sadoun T, Cimmino S (2000) Macromol Mater Eng 278:36

    Article  CAS  Google Scholar 

  16. Allara DL (1975) Environ Health Perspect 11:29

    Article  CAS  Google Scholar 

  17. White JR, Turnbull A (1994) J Mater Sci 29:584. doi:https://doi.org/10.1007/BF00445969

    Article  CAS  Google Scholar 

  18. Graice IM, Younan MYA, Naga SAR (2005) J Pressure Vessel Technol Trans ASME 127:70

    Article  CAS  Google Scholar 

  19. Gray AP (1970) Thermochim Acta 1:563

    Article  CAS  Google Scholar 

  20. Wunderlich B (1980) Macromolecular physics—vol 3, Crystal melting. Academic Press, New York

  21. Schmid M, Ritter A, Affolter S (2006) J Therm Anal Cal 83:367

    Article  CAS  Google Scholar 

  22. Koski L, Saarela K (1982) J Therm Anal 25:167

    Article  CAS  Google Scholar 

  23. Schmid M, Affolter S (2003) Polym Test 22:419

    Article  CAS  Google Scholar 

  24. Bellamy LJ (1975) The infrared spectra of complex molecules, vol 1. Chapman and Hall, London

    Book  Google Scholar 

  25. Bellamy LJ (1975) The infrared spectra of complex molecules, vol 2—advances in infrared group frequencies. Chapman and Hall, London

  26. Mason NS (1998) PhD thesis, Imperial College, London

  27. Hassinen J, Lundback M, Ifwarson M, Gedde UW (2004) Polym Degrad Stab 84:261

    Article  CAS  Google Scholar 

  28. Pinter G, Haager M, Balika W, Lang RW (2007) Polym Test 26:180

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Ms. P. Carry for her help with the analytical treatments in this project. This research has been supported by ESPRC and Thames Water Utlities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. B. Sanders.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanders, J.M.B., Shepherd, M.A., Belmonte, H.M.S. et al. Methods for determining the in-service life of polymer water pipes. J Mater Sci 44, 4683–4691 (2009). https://doi.org/10.1007/s10853-009-3719-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3719-x

Keywords

Navigation