Skip to main content
Log in

Ferroelectricity in chemical nanostructures: proximal probe characterization and the surface chemical environment

  • Ferroelectrics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Renewed interest in the evolution of the ferroelectric phase transition temperature TC and the character of ordering of ferroelectric polarizations with finite size and shape is driven in part by several recent developments. An expanding array of pathways for producing nano-structured ferroelectric oxides with control of size, shape, and composition has emerged. Experimental characterization methods originally developed for thin films have been extended to ensemble-free investigations of functional properties of individual nanostructures. Progress in understanding the origin and nature of ferroelectric stability in ultra-thin films and nanostructures is reviewed. Specifically, we discuss evidence for a new surface adsorbate-driven mechanism for stabilizing ferroelectricity in nanostructures owing to a combination of recent proximal probe analysis and model calculation results, along with a new experimental paradigm for investigating and exploiting these effects and effects of finite curvature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Scott JF, Fan HJ, Kawasaki S, Banys J, Ivanov M, Krotkus A, Macutkevic J, Blinc R, Laguta VV, Cevc P, Liu JS, Kholkin AL (2008) Nano Lett 8:4404

    Article  CAS  Google Scholar 

  2. Scott JF (2007) Science 315:954

    Article  CAS  Google Scholar 

  3. Ramesh R, Spaldin NA (2007) Nat Mater 6:21

    Article  CAS  Google Scholar 

  4. Huang L, Chen Z, Wilson JD, Banerjee S, Robinson RD, Herman I, Laibowitz R, O’Brien S (2006) J Appl Phys 100:034316

    Article  CAS  Google Scholar 

  5. Ramadan T, Levy M, Osgood RM (2000) Appl Phys Lett 76:1407

    Article  CAS  Google Scholar 

  6. Scott JF, Morrison FD, Miyake M, Zubko P, Lou X, Kugler VM, Rios S, Zhang M (2005) J Am Ceram Soc 88:1691

    Article  CAS  Google Scholar 

  7. Rüdiger A, Waser R (2008) J Alloys Compd 449:2

    Article  CAS  Google Scholar 

  8. Gruverman A, Kholkin A (2006) Rep Prog Phys 69:2443

    Article  CAS  Google Scholar 

  9. Scott JF, Paz de Araujo C (1989) Science 246:1400

    Article  CAS  Google Scholar 

  10. Mitsui T, Furuichi J (1953) Phys Rev 90:193

    Article  CAS  Google Scholar 

  11. Roytburd AL (1976) Phys Status Solidi A 37:329

    Article  Google Scholar 

  12. Wang CL, Smith SRP (1995) J Phys: Condens Matter 7:7163

    CAS  Google Scholar 

  13. Bratkovsky AM, Levanyuk AP (2005) Phys Rev Lett 94:107601

    Article  CAS  Google Scholar 

  14. Junquera J, Ghosez P (2003) Nature 422:506

    Article  CAS  Google Scholar 

  15. Naumov I, Fu H, Bellaiche L (2004) Nature 432:737

    Article  CAS  Google Scholar 

  16. Ishibashi Y, Orihara H (1992) Jpn J Appl Phys 61:4650

    Article  Google Scholar 

  17. Alpay SP, Roytburd AL (1998) J Appl Phys 83:4714

    Article  CAS  Google Scholar 

  18. Pertsev NA, Zembilgotov AG, Tagantsev AK (1998) Phys Rev Lett 80:1988

    Article  CAS  Google Scholar 

  19. Bratkovsky AM, Levanyuk AP (2000) Phys Rev B 61:15042

    Article  CAS  Google Scholar 

  20. O’Neill D, Bowman RM, Gregg JM (2000) Appl Phys Lett 77:1520

    Article  Google Scholar 

  21. Akdogan EK, Safari A (2007) J Appl Phys 101:064114

    Article  CAS  Google Scholar 

  22. Akdogan EK, Safari A (2007) J Appl Phys 101:064115

    Article  CAS  Google Scholar 

  23. Choi KJ, Biegalski M, Li YL, Sharan A, Schubert J, Uecker R, Reiche P, Chen YB, Pan XQ, Gopalan V, Chen LQ, Schlom DG, Eom CB (2004) Science 306:1005

    Article  CAS  Google Scholar 

  24. Warusawithana MP, Cen C, Sleasman CR, Woicik JC, Li Y, Kourkoutis LF, Klug JA, Li H, Ryan P, Wang LP, Bedzyk M, Muller DA, Chen LQ, Levy J, Schlom DG (2009) Science 324:367

    Article  CAS  Google Scholar 

  25. Garcia V, Fusil S, Bouzehouane K, Enouz-Vedrenne S, Mathur ND, Barthelemy A, Bibes M (2009) Nature. doi:https://doi.org/10.1038/nature08128

    Article  CAS  Google Scholar 

  26. Haeni JH, Irvin P, Chang W, Uecker R, Reiche P, Li YL, Choudhury S, Tian W, Hawley ME, Craigo B, Tagantsev AK, Pan XQ, Streiffer SK, Chen LQ, Kirchoefer SW, Levy J, Schlom DG (2005) Nature 430:758

    Article  CAS  Google Scholar 

  27. Dawber M, Lichtensteiger C, Cantoni M, Veithen M, Ghosez P, Johnston K, Rabe KM, Triscone JM (2005) Phys Rev Lett 95:177601

    Article  CAS  Google Scholar 

  28. Bousquet E, Dawber M, Stucki N, Lichtensteiger C, Hermet P, Gariglio S, Triscone JM, Ghosez P (2008) Nature 452:732

    Article  CAS  Google Scholar 

  29. Mantese JV, Alpay SP (2005) Graded ferroelectrics, transpacitors, and transponents. Springer, New York

    Google Scholar 

  30. Fong DD, Stephenson GB, Streiffer SK, Eastman JA, Auciello O, Fuoss PH, Thompson C (2004) Science 304:1650

    Article  CAS  Google Scholar 

  31. Tybell T, Ahn CH, Triscone JM (1999) Appl Phys Lett 75:856

    Article  CAS  Google Scholar 

  32. Fong DD, Kolpak AM, Eastman JA, Streiffer SK, Fuoss PH, Stephenson GB, Thompson C, Kim DM, Choi KJ, Eom CB, Grinberg I, Rappe AM (2006) Phys Rev Lett 96:127601

    Article  CAS  Google Scholar 

  33. Urban JJ, Spanier JE, Ouyang L, Yun WS, Park H (2003) Adv Mater 15:423

    Article  CAS  Google Scholar 

  34. Spanier JE, Kolpak AM, Urban JJ, Grinberg I, Ouyang L, Yun WS, Rappe AM, Park H (2006) Nano Lett 6:735

    Article  CAS  Google Scholar 

  35. Rüdiger A, Schneller T, Roelofs A, Tiedke S, Schmitz T, Waser R (2005) Appl Phys A 80:1247

    Article  CAS  Google Scholar 

  36. Alexe M, Hesse D (2006) J Mater Sci 41:1. doi:https://doi.org/10.1007/s10853-005-5912-x

    Article  CAS  Google Scholar 

  37. Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan H (2003) Adv Mater 15:353

    Article  CAS  Google Scholar 

  38. Yoon S, Baik S, Kim MG, Shin N (2006) J Am Ceram Soc 89:1816

    Article  CAS  Google Scholar 

  39. Hoshina T, Kakemoto H, Tsurumi T, Wada S, Yashima M (2006) J Appl Phys 99:054311

    Article  CAS  Google Scholar 

  40. O’Brien S, Brus LE, Murray CB (2001) J Am Chem Soc 123:12085

    Article  CAS  Google Scholar 

  41. Zhao J, Wang X, Li L, Wang X, Li Y (2008) Ceram Int 34:1223

    Article  CAS  Google Scholar 

  42. Whang D, Jin S, Wu Y, Lieber CM (2003) Nano Lett 3:1255

    Article  CAS  Google Scholar 

  43. Masuda H, Fukuda K (1995) Science 268:1466

    Article  CAS  Google Scholar 

  44. Sadasivan V, Richter CP, Menon L, Williams PF (2005) AIChE Journal 51:649

    Article  CAS  Google Scholar 

  45. Steinhart M, Wendorff JH, Greiner A, Wehrspohn RB, Nielsch K, Schilling J, Choi J, Goesele U (2002) Science 296:1997

    Article  CAS  Google Scholar 

  46. Urban JJ, Yun WS, Gu Q, Park H (2002) J Am Chem Soc 124:1186

    Article  CAS  Google Scholar 

  47. Hernandez BA, Chang KS, Fisher ER, Dorhout PK (2002) Chem Mater 14:480

    Article  CAS  Google Scholar 

  48. Luo Y, Szafraniak I, Zakharov ND, Nagarajan V, Steinhart M, Wehrspohn RB, Wendorff JH, Ramesh R, Alexe M (2003) Appl Phys Lett 83:440

    Article  CAS  Google Scholar 

  49. Morrison FD, Ramsay L, Scott JF (2003) J Phys-Condens Matter 15:L527

    Article  CAS  Google Scholar 

  50. Park TJ, Mao Y, Wong SS (2004) Chem Commun 23:2708

    Article  CAS  Google Scholar 

  51. Zhao L, Steinhart M, Yu J, Gösele U (2006) J Mater Res 21:685

    Article  CAS  Google Scholar 

  52. Cheng JY, Ross CA, Smith HI, Thomas EL (2006) Adv Mater 18:2505

    Article  CAS  Google Scholar 

  53. Evans PR, Zhu X, Baxter P, McMillen M, McPhillips J, Morrison FD, Scott JF, Pollard RJ, Bowman RM, Gregg JM (2007) Nano Lett 7:1134

    Article  CAS  Google Scholar 

  54. Lee W, Han H, Lotnyk A, Schubert MA, Senz S, Alexe M, Hesse D, Baik S, Gösele U (2008) Nat Nanotechnol 3:402

    Article  CAS  Google Scholar 

  55. Yun WS, Urban JJ, Gu Q, Park H (2002) Nano Lett 2:447

    Article  CAS  Google Scholar 

  56. Kalinin SV, Bonnell DA (2000) J Appl Phys 87:3950

    Article  CAS  Google Scholar 

  57. Noma T, Wada S, Yano M, Suzuki T (1996) J Appl Phys 80:5223

    Article  CAS  Google Scholar 

  58. Abicht HP, Voltzke D, Schneider R, Woltersdorf J, Lichtenberger O (1998) Mater Chem Phys 55:188

    Article  CAS  Google Scholar 

  59. Wegmann M, Watson L, Hendry A (2004) J Am Ceram Soc 87:371

    Article  CAS  Google Scholar 

  60. Sun Q, Reuter K, Scheffler M (2003) Phys Rev B 67:205424

    Article  CAS  Google Scholar 

  61. Reuter K, Scheffler M (2003) Phys Rev Lett 90:046103

    Article  CAS  Google Scholar 

  62. Wang RV, Fong DD, Jiang F, Highland MJ, Fuoss PH, Thompson C, Kolpak AM, Eastman JA, Streiffer SK, Rappe AM, Stephenson GB (2009) Phys Rev Lett 102:047601

    Article  CAS  Google Scholar 

  63. Li D, Zhao MH, Garra J, Kolpak AM, Rappe AM, Bonnell DA, Vohs JM (2008) Nat Mater 7:473

    Article  CAS  Google Scholar 

  64. Rodriguez BJ, Gao XS, Liu LF, Lee W, Naumov II, Bratkovsky AM, Hesse D, Alexe M (2009) Nano Lett 9:1127

    Article  CAS  Google Scholar 

  65. Morozovska AN, Eliseev EA, Glinchuk MD (2007) Phys B 387:358

    Article  CAS  Google Scholar 

  66. Morozovska AN, Glinchuk MD, Eliseev EA (2007) Phase Transit 80:71

    Article  CAS  Google Scholar 

  67. Morozovska AN, Glinchuk MD, Eliseev EA (2007) Phys Rev B 76:014102

    Article  CAS  Google Scholar 

  68. Yadlovker D, Berger S (2005) Phys Rev B 71:184112

    Article  CAS  Google Scholar 

  69. Wang Z, Hu J, Yu MF (2006) Appl Phys Lett 89:263119

    Article  CAS  Google Scholar 

  70. Alexe M, Hesse D, Schmidt V, Senz S, Fan HJ, Zacharias M, Gösele U (2006) Appl Phys Lett 89:172907

    Article  CAS  Google Scholar 

  71. Damjanovic D, Budimir M, Davis M, Setter N (2006) J Mater Sci 41:65. doi:https://doi.org/10.1007/s10853-005-5925-5

    Article  CAS  Google Scholar 

  72. Nonnenmann SS, Leaffer OD, Gallo EM, Coster MT, Joseph RS, Spanier JE (2009) Ferroelectric properties of co-axial noble-metal/oxide core/shell perovskite nanowires. MRS fall meeting, Boston MA, Poster C9.5

  73. Gruverman A, Kalinin SV (2006) J Mater Sci 41:107. doi:https://doi.org/10.1007/s10853-005-5946-0

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank H. Park, J. J. Urban, W. S. Yun, L. Ouyang, A. M. Rappe, A. Kolpak and I. Grinberg, E. M. Gallo, O. D. Leaffer, M. T. Coster, R. S. Joseph, C. L. Johnson, and G. R. Soja for collaborative contributions to this study, and S. P. Alpay, A. Morozovska, T. McGuckin and S. L. Moskow for helpful additional technical discussions and support. The authors acknowledge support for this study from the Materials Sciences Division of the U. S. Army Research Office under Award No. W911NF-08-1-0067.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan E. Spanier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nonnenmann, S.S., Spanier, J.E. Ferroelectricity in chemical nanostructures: proximal probe characterization and the surface chemical environment. J Mater Sci 44, 5205–5213 (2009). https://doi.org/10.1007/s10853-009-3680-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3680-8

Keywords

Navigation