Skip to main content
Log in

Evidence of 90° polarization switching in polycrystalline macro-domains of self-supported BaTiO3 films

  • Ferroelectrics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

It was shown previously that the self-supported films of nanocrystalline (30–80 nm) BaTiO3 spontaneously split into regions, within which the direction of spontaneous polarization of each grain is aligned as closely as possible to some average direction. These regions, called polycrystalline macro-domains, may be of two types: (1) those with out-of-plane polarization and (2) those with in-plane polarization. In-plane macro-domains exhibit in-plane optical anisotropy which can be monitored using cross-polarized transmitted light. This property was utilized in the current work to study the influence of temperature variation on macro-domains. According to the temperature dependence of the intensity of cross-polarized transmitted light, the films could be divided into three groups: (group 1) those films that did not exhibit strong changes in intensity; (group 2) those that exhibited a strong and abrupt change at a temperature between 20 and 120 °C; and (group 3) those that upon heating exhibited a gradual increase in the intensity of the cross-polarized transmitted light. The observed changes were reversible and consistent with a 90° rotation of the c-axis of some grains, which caused reversible changes in the macro-domain structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Streiffer SK, Parker CB, Romanov AE, Lefevre MJ, Zhao L, Speck JS, Pompe W, Foster CM, Bai GR (1998) J Appl Phys 83:2742

    Article  CAS  Google Scholar 

  2. Speck JS, Seifert A, Pompe W, Ramesh R (1994) J Appl Phys 76:477

    Article  CAS  Google Scholar 

  3. Speck JS, Daykin AC, Seifert A, Romanov AE, Pompe W (1995) J Appl Phys 78:1696

    Article  CAS  Google Scholar 

  4. Roytburd AL, Alpay SP, Bendersky LA, Nagarajan V, Ramesh R (2001) J Appl Phys 89:553

    Article  CAS  Google Scholar 

  5. Roytburd AL (1998) J Appl Phys 83:239

    Article  CAS  Google Scholar 

  6. Roytburd AL (1998) J Appl Phys 83:228

    Article  CAS  Google Scholar 

  7. Roytburd AL (1993) Phase Trans 45:1

    Article  CAS  Google Scholar 

  8. Romanov AE, Vojta A, Pompe W, Lefevre MJ, Speck JS (1999) Phys Status Solidi A 172:225

    Article  CAS  Google Scholar 

  9. Pompe W, Gong X, Suo Z, Speck JS (1993) J Appl Phys 74:6012

    Article  CAS  Google Scholar 

  10. Kwak BS, Erbil A, Budai JD, Chisholm MF, Boatner LA, Wilkens BJ (1994) Phys Rev B 49:14865

    Article  CAS  Google Scholar 

  11. Nair JP, Stavitski N, Zon I, Gartsman K, Lubomirsky I, Roytburd AL (2002) Europhys Lett 60:782

    Article  CAS  Google Scholar 

  12. Saad MM, Baxter P, Schilling A, Adams T, Zhu X, Bowman RM, Gregg JM, Zubko P, Morrison FD, Scott JF (2005) J Phys I 128:63

    CAS  Google Scholar 

  13. Lyahovitskaya V, Feldman Y, Zon I, Wachtel E, Lubomirsky I, Roytburd AL (2005) Adv Mater 17:1956

    Article  CAS  Google Scholar 

  14. Lubomirsky I (2007) Phys Chem Chem Phys 9:3701

    Article  CAS  Google Scholar 

  15. Yvry Y, Lyahovitskaya V, Zon I, Lubomirsky I, Wachtel E, Roytburd AL (2007) Appl Phys Lett 90:172905

    Article  Google Scholar 

  16. Ouyang J, Slusker J, Levin I, Kim DM, Eom CB, Ramesh R, Roytburd AL (2007) Adv Funct Mater 17:2094

    Article  CAS  Google Scholar 

  17. Fu HX, Cohen RE (2000) Nature 403:281

    Article  CAS  Google Scholar 

  18. Damjanovic D, Budimir M, Davis M, Setter N (2006) J Mater Sci 41:65. doi:https://doi.org/10.1007/s10853-005-5925-5

    Article  CAS  Google Scholar 

  19. Krainyk GG, Otko AI (1989) Izv Akad Nauk SSSR Ser Fizich 53:1407

    Google Scholar 

  20. Roytburd A, Wuttig M, Zhukovskiy I (1992) Scripta Metall Mater 27:1343

    Article  Google Scholar 

  21. Jona F, Shirane G (1998) Ferroelectric crystals. Dover Publications, New York

    Google Scholar 

  22. Johnston AR (1971) J Appl Phys 42:3501

    Article  CAS  Google Scholar 

  23. Kossoy A, Feldman Y, Korobko R, Wachtel E, Lubomirsky I, Maier J (2009) Adv Funct Mater 19:634

    Article  CAS  Google Scholar 

  24. Ebralidze I, Lyahovitskaya V, Zon I, Wachtel E, Lubomirsky I (2005) J Mater Chem 15:4258

    Article  CAS  Google Scholar 

  25. Lawless WN, DeVries RC (1964) J Appl Phys 35:2638

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the US–Israel Binational Science Foundation, the Nancy and Stephen Grand Research Center for Sensors and Security and the Israel Ministry of Science for funding this research. This research is made possible in part by the historic generosity of the Harold Perlman Family. We are grateful to Drs. Ellen Wachtel and Yshai Feldman of the Weizmann Institute of Science for fruitful discussions and help with XRD measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Lubomirsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suleimanov, N., Milner, A., Zon, I. et al. Evidence of 90° polarization switching in polycrystalline macro-domains of self-supported BaTiO3 films. J Mater Sci 44, 5312–5317 (2009). https://doi.org/10.1007/s10853-009-3642-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3642-1

Keywords

Navigation