Skip to main content
Log in

A post-growth processing methodology to achieve barium strontium titanate thin films with low dielectric loss and high tunability for reconfigurable tunable devices

  • Ferroelectrics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Ba0.60Sr0.40TiO3 (BST) thin films, grown via RF-sputtering and the metalorganic solution deposition (MOSD) techniques, were post-growth annealed via conventional thermal annealing (CTA) and UV-photon irradiation annealing. With respect to the conventional thermal annealed films the UV-photon irradiation annealed films possessed improved structural properties and dielectric response. The optimization of the UV-photon irradiation annealing process parameters (using RF-sputtered BST films) was achieved via a detailed set of iso-thermal/chronal annealing experiments. The optimized UV-process parameters, applied to MOSD synthesized BST films revealed further enhanced dielectric response, i.e., 23% reduction in tan δ with sustained tunability of 42%. The improvements in the material properties of the UV-photon irradiation annealed BST thin films are attributed to stoichiometry and structural changes enabled through the UV-photon irradiation annealing process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Uher J, Hoefer WJR (1991) IEEE Trans Microwave Theory Tech 39(4):643

    Article  Google Scholar 

  2. Helszajn J (1985) YIG resonators and filters. New York, Wiley

    Google Scholar 

  3. Kuanr B, Harward IR, Marvin DL, Fal T, Camley RE, Mills DL, Celinski Z (2005) IEEE Trans Magn 41(10):3538

    Article  CAS  Google Scholar 

  4. Vorobiev A, Rundqvist P, Khamchane K, Gevorgian S (2003) Appl Phys Lett 83(15):3144

    Article  CAS  Google Scholar 

  5. Cole MW, Geyer RG (2004) Revista Mexicana De Fisica 50(3):232

    CAS  Google Scholar 

  6. Cole MW, Geyer RG (2004) Mech Mater 36(10):1017

    Article  Google Scholar 

  7. Cole MW, Hubbard C, Ngo E, Ervin M, Wood M, Geyer RG (2002) J Appl Phys 92:475

    Article  CAS  Google Scholar 

  8. Cole MW, Joshi PC, Ervin MH, Wood MC, Pfeffer RL (2000) Thin Solid Films 374(1):34

    Article  CAS  Google Scholar 

  9. Ban Z-G, Alpay SP (2003) J Appl Phys 93:504

    Article  CAS  Google Scholar 

  10. Hyun S, Lee JH, Kim SS, Char K, Park SJ, Sok S, Lee EH (2000) Appl Phys Lett 77:3084

    Article  CAS  Google Scholar 

  11. Kim HS, Hyun TS, Kim HG, Kim ID, Yun TS, Lee JC (2006) Appl Phys Lett 89:052902

    Article  Google Scholar 

  12. Sahoo SK, Agrawal DC, Mohapatra YN, Majumder SB, Katiyar RS (2004) Appl Phys Lett 85:5001

    Article  CAS  Google Scholar 

  13. Choi W, Kang BS, Jia QX, Matias V, Findikoglu AT (2006) Appl Phys Lett 88:062907

    Article  Google Scholar 

  14. Ramanathan S, Chi D, McIntyre PC, Wetteland CJ, Tesmer JR (2003) J Electrochem Soc 150:F110

    Article  CAS  Google Scholar 

  15. JCPDS Report No. 00-034-0411

  16. Kim WJ, Chang W, Qadri SB, Pond JM, Kirchoefer SW, Chrisey DB, Horwitz JS (2000) Appl Phys Lett 76:1185

    Article  CAS  Google Scholar 

  17. Podpirka A, Cole MW, Ramanathan S (2008) Appl Phys Lett 92:212906

    Article  Google Scholar 

  18. Cole MW, Joshi PC, Ervin MH (2001) J Appl Phys 89(11):6336

    Article  CAS  Google Scholar 

  19. Pervez NK, Hansen PJ, York RA (2004) Appl Phys Lett 85:4451

    Article  CAS  Google Scholar 

  20. Horwitz JS, Chang W, Kim W, Qadri SB, Pond JM, Kirchoefer SW, Chrisey DB (2000) J Electroceram 4(2–3):357

    Article  CAS  Google Scholar 

  21. Joo J-H, Seon J-M, Jeon Y-C, Oh K-Y, Roh J-S, Kim J-J (1997) Appl Phys Lett 70:3053

    Article  CAS  Google Scholar 

  22. Tsuchiya M, Shutthanandan V, Engelhard MH, Ramanathan S (2008) Appl Phys Lett 93:263109

    Article  Google Scholar 

  23. Wu Y, Jacobs EG, Pinizzotto RF, Tu R, Liu HY, Summerfelt SR, Grande BE (1995) Mater Res Soc Symp Proc 361:269

    Article  CAS  Google Scholar 

  24. Pontes FM, Longo E, Leite ER, Varela JA (2001) Thin Solid Films 386(1):91

    Article  CAS  Google Scholar 

  25. Wu L, Wu S, Chang F-C, Shen Y-T, Chen Y-C (2000) J Mater Sci 35:5945. doi:https://doi.org/10.1023/A:1026722206381

    Article  CAS  Google Scholar 

  26. Cole MW, Ngo E, Hirsch S, Demaree JD, Zhong S, Alpay SP (2007) J Appl Phys 102:034104

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melanie W. Cole.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cole, M.W., Podpirka, A. & Ramanathan, S. A post-growth processing methodology to achieve barium strontium titanate thin films with low dielectric loss and high tunability for reconfigurable tunable devices. J Mater Sci 44, 5332–5338 (2009). https://doi.org/10.1007/s10853-009-3538-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3538-0

Keywords

Navigation