Skip to main content

Advertisement

Log in

Effect of uniaxial stress on the electromechanical properties in ferroelectric thin films under combined loadings

  • Ferroelectrics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The electromechanical properties of ferroelectric thin films under an alternating electric field and a static uniaxial compressive stress are investigated using the modified planar four-state Potts model. To implement the electromechanical properties and the coupling of the electrical and mechanical response, the mechanical energy density as well as the energy due to anisotropic switching between a-domain and c-domain are incorporated in the Hamiltonian. Besides, there are two contributions to the strain at each cell: eigenstrain and elastic strain. Our simulation results show that the longitudinal strain-electric field butterfly loop shifts downward along strain axis and that for the transverse strain shifts upward as the stress magnitude is increased. Moreover, the polarization-electric field hysteresis loop becomes a double-loop under a large compressive stress. The piezoelectric coefficient increases with the stress magnitude and reaches a maximum value at a critical stress level. It then gradually decreases to a small value at large stress magnitudes. Our results qualitatively agree with experimental ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Zhou QF, Zhang QQ, Yoshimura T et al (2003) Appl Phys Lett 82:4767

    Article  CAS  Google Scholar 

  2. Zhao P, Li J (2008) J Appl Phys 103:104104

    Article  Google Scholar 

  3. Tan X, Jo W, Granzow T et al (2009) Appl Phys Lett 94:042909

    Article  Google Scholar 

  4. Bell AJ (2006) J Mater Sci 41:13. doi:https://doi.org/10.1007/s10853-005-5913-9

    Article  CAS  Google Scholar 

  5. Grigoriev A, Do DH, Kim DM et al (2006) Phys Rev Lett 96:187601

    Article  Google Scholar 

  6. Fu H, Bellaiche L (2003) Phys Rev Lett 91:057601

    Article  Google Scholar 

  7. Zhou D, Kamlah M (2004) J Appl Phys 96:6634

    Article  CAS  Google Scholar 

  8. Chaplya PM, Mitrovic M, Carman GP et al (2006) J Appl Phys 100:124111

    Article  Google Scholar 

  9. Duan Y, Shi H, Qin L (2008) J Phys Condens Matter 20:175210

    Article  Google Scholar 

  10. Burcsu E, Ravichandran G, Bhattacharya K (2004) J Mech Phys Solids 52:823

    Article  CAS  Google Scholar 

  11. Park JH, Park J, Lee KB, Koo TY et al (2007) Appl Phys Lett 91:012906

    Article  Google Scholar 

  12. Shieh J, Yeh JH, Shu YC et al (2007) Appl Phys Lett 91:062901

    Article  Google Scholar 

  13. Jones JL, Hoffman M, Daniels JE et al (2006) Appl Phys Lett 89:092901

    Article  Google Scholar 

  14. Osone S, Shimojo Y, Brinkman K et al (2007) Appl Phys Lett 90:262905

    Article  Google Scholar 

  15. Achuthan A, Sun CT (2005) J Appl Phys 97:114103

    Article  Google Scholar 

  16. Suchanicz J, Sitko D, Kim-Ngan NTH et al (2008) J Appl Phys 104:094106

    Article  Google Scholar 

  17. Fu D, Suzuki K, Kato K (2003) Appl Phys Lett 82:2130

    Article  CAS  Google Scholar 

  18. Budimir M, Damjanovic D, Setter N (2005) Phys Rev B 72:064107

    Article  Google Scholar 

  19. Emelyanov AY, Pertsev NA, Kholkin AL (2002) Phys Rev B 66:214108

    Article  Google Scholar 

  20. Yang G, Yue Z, Sun T et al (2008) J Phys D Appl Phys 41:045307

    Article  Google Scholar 

  21. Liu JM, Chan HL, Choy CL (2002) Mater Lett 52:213

    Article  CAS  Google Scholar 

  22. Liu JM, Lau ST, Chan HLW, Choy CL (2006) J Mater Sci 41:163. doi:https://doi.org/10.1007/s10853-005-6016-3

    Article  CAS  Google Scholar 

  23. Cao HX, Lo VC, Chung WWY (2006) J Appl Phys 99:024103

    Article  Google Scholar 

  24. Li WF, Weng GJ (2002) J Appl Phys 91:3806

    Article  CAS  Google Scholar 

  25. Li FX, Fang DN, Liu YM (2006) J Appl Phys 100:084101

    Article  Google Scholar 

  26. Li KT, Lo VC (2005) J Appl Phys 97:034107

    Article  Google Scholar 

  27. Granzow T, Suvaci E, Kungl H et al (2006) Appl Phys Lett 89:262908

    Article  Google Scholar 

  28. Zhou D, Kamlah M, Munz D (2005) J Eur Ceram Soc 25:425

    Article  CAS  Google Scholar 

  29. Lynch CS (1996) Acta Mater 44:4137

    Article  CAS  Google Scholar 

  30. Zhao J, Zhang QM (1996) Proc ISAF IEEE Symp, p 971

Download references

Acknowledgements

This work was supported by the Research Grant of the Hong Kong Polytechnic University under the Grant No. 1-ZV44, the National Natural Science Foundation of China under the Grant Nos. 10474069 and 50832002, the Natural Science Foundation of JiangSu Education Committee of China under the Grant No. 08KJB140006. One of authors, H.X. Cao, was supported by the Jiangsu Government Scholarship for Overseas Studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Xia Cao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, HX., Lo, V.C. & Li, ZY. Effect of uniaxial stress on the electromechanical properties in ferroelectric thin films under combined loadings. J Mater Sci 44, 5256–5262 (2009). https://doi.org/10.1007/s10853-009-3537-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3537-1

Keywords

Navigation